lower bounds
Recently Published Documents


TOTAL DOCUMENTS

7173
(FIVE YEARS 987)

H-INDEX

88
(FIVE YEARS 7)

2022 ◽  
Vol 69 (1) ◽  
pp. 1-18
Author(s):  
Anupam Gupta ◽  
David G. Harris ◽  
Euiwoong Lee ◽  
Jason Li

In the k -cut problem, we want to find the lowest-weight set of edges whose deletion breaks a given (multi)graph into k connected components. Algorithms of Karger and Stein can solve this in roughly O ( n 2k ) time. However, lower bounds from conjectures about the k -clique problem imply that Ω ( n (1- o (1)) k ) time is likely needed. Recent results of Gupta, Lee, and Li have given new algorithms for general k -cut in n 1.98k + O(1) time, as well as specialized algorithms with better performance for certain classes of graphs (e.g., for small integer edge weights). In this work, we resolve the problem for general graphs. We show that the Contraction Algorithm of Karger outputs any fixed k -cut of weight α λ k with probability Ω k ( n - α k ), where λ k denotes the minimum k -cut weight. This also gives an extremal bound of O k ( n k ) on the number of minimum k -cuts and an algorithm to compute λ k with roughly n k polylog( n ) runtime. Both are tight up to lower-order factors, with the algorithmic lower bound assuming hardness of max-weight k -clique. The first main ingredient in our result is an extremal bound on the number of cuts of weight less than 2 λ k / k , using the Sunflower lemma. The second ingredient is a fine-grained analysis of how the graph shrinks—and how the average degree evolves—in the Karger process.


2022 ◽  
Vol 14 (1) ◽  
pp. 1-54
Author(s):  
Victor Lagerkvist ◽  
Magnus Wahlström

We study the fine-grained complexity of NP-complete satisfiability (SAT) problems and constraint satisfaction problems (CSPs) in the context of the strong exponential-time hypothesis (SETH) , showing non-trivial lower and upper bounds on the running time. Here, by a non-trivial lower bound for a problem SAT (Γ) (respectively CSP (Γ)) with constraint language Γ, we mean a value c 0 > 1 such that the problem cannot be solved in time O ( c n ) for any c < c 0 unless SETH is false, while a non-trivial upper bound is simply an algorithm for the problem running in time O ( c n ) for some c < 2. Such lower bounds have proven extremely elusive, and except for cases where c 0 =2 effectively no such previous bound was known. We achieve this by employing an algebraic framework, studying constraint languages Γ in terms of their algebraic properties. We uncover a powerful algebraic framework where a mild restriction on the allowed constraints offers a concise algebraic characterization. On the relational side we restrict ourselves to Boolean languages closed under variable negation and partial assignment, called sign-symmetric languages. On the algebraic side this results in a description via partial operations arising from system of identities, with a close connection to operations resulting in tractable CSPs, such as near unanimity operations and edge operations . Using this connection we construct improved algorithms for several interesting classes of sign-symmetric languages, and prove explicit lower bounds under SETH. Thus, we find the first example of an NP-complete SAT problem with a non-trivial algorithm which also admits a non-trivial lower bound under SETH. This suggests a dichotomy conjecture with a close connection to the CSP dichotomy theorem: an NP-complete SAT problem admits an improved algorithm if and only if it admits a non-trivial partial invariant of the above form.


2022 ◽  
Vol 6 (POPL) ◽  
pp. 1-28
Author(s):  
Pascal Baumann ◽  
Rupak Majumdar ◽  
Ramanathan S. Thinniyam ◽  
Georg Zetzsche

Thread pooling is a common programming idiom in which a fixed set of worker threads are maintained to execute tasks concurrently. The workers repeatedly pick tasks and execute them to completion. Each task is sequential, with possibly recursive code, and tasks communicate over shared memory. Executing a task can lead to more new tasks being spawned. We consider the safety verification problem for thread-pooled programs. We parameterize the problem with two parameters: the size of the thread pool as well as the number of context switches for each task. The size of the thread pool determines the number of workers running concurrently. The number of context switches determines how many times a worker can be swapped out while executing a single task---like many verification problems for multithreaded recursive programs, the context bounding is important for decidability. We show that the safety verification problem for thread-pooled, context-bounded, Boolean programs is EXPSPACE-complete, even if the size of the thread pool and the context bound are given in binary. Our main result, the EXPSPACE upper bound, is derived using a sequence of new succinct encoding techniques of independent language-theoretic interest. In particular, we show a polynomial-time construction of downward closures of languages accepted by succinct pushdown automata as doubly succinct nondeterministic finite automata. While there are explicit doubly exponential lower bounds on the size of nondeterministic finite automata accepting the downward closure, our result shows these automata can be compressed. We show that thread pooling significantly reduces computational power: in contrast, if only the context bound is provided in binary, but there is no thread pooling, the safety verification problem becomes 3EXPSPACE-complete. Given the high complexity lower bounds of related problems involving binary parameters, the relatively low complexity of safety verification with thread-pooling comes as a surprise.


2022 ◽  
Vol 186 (2) ◽  
Author(s):  
Benjamin Doyon

AbstractHydrodynamic projections, the projection onto conserved charges representing ballistic propagation of fluid waves, give exact transport results in many-body systems, such as the exact Drude weights. Focussing one one-dimensional systems, I show that this principle can be extended beyond the Euler scale, in particular to the diffusive and superdiffusive scales. By hydrodynamic reduction, Hilbert spaces of observables are constructed that generalise the standard space of conserved densities and describe the finer scales of hydrodynamics. The Green–Kubo formula for the Onsager matrix has a natural expression within the diffusive space. This space is associated with quadratically extensive charges, and projections onto any such charge give generic lower bounds for diffusion. In particular, bilinear expressions in linearly extensive charges lead to explicit diffusion lower bounds calculable from the thermodynamics, and applicable for instance to generic momentum-conserving one-dimensional systems. Bilinear charges are interpreted as covariant derivatives on the manifold of maximal entropy states, and represent the contribution to diffusion from scattering of ballistic waves. An analysis of fractionally extensive charges, combined with clustering properties from the superdiffusion phenomenology, gives lower bounds for superdiffusion exponents. These bounds reproduce the predictions of nonlinear fluctuating hydrodynamics, including the Kardar–Parisi–Zhang exponent 2/3 for sound-like modes, the Levy-distribution exponent 3/5 for heat-like modes, and the full Fibonacci sequence.


2022 ◽  
Author(s):  
◽  
Long Qian

<p><b>We investigate the geometry of effective Banach spaces, namely a sequenceof approximation properties that lies in between a Banach space having a basis and the approximation property.</b></p> <p>We establish some upper bounds on suchproperties, as well as proving some arithmetical lower bounds. Unfortunately,the upper bounds obtained in some cases are far away from the lower bound.</p> <p>However, we will show that much tighter bounds will require genuinely newconstructions, and resolve long-standing open problems in Banach space theory.</p> <p>We also investigate the effectivisations of certain classical theorems in Banachspaces.</p>


Author(s):  
Adrián Hinojosa-Calleja ◽  
Marta Sanz-Solé

AbstractConsider the linear stochastic biharmonic heat equation on a d–dimen- sional torus ($$d=1,2,3$$ d = 1 , 2 , 3 ), driven by a space-time white noise and with periodic boundary conditions: $$\begin{aligned} \left( \frac{\partial }{\partial t}+(-\varDelta )^2\right) v(t,x)= \sigma \dot{W}(t,x),\ (t,x)\in (0,T]\times {\mathbb {T}}^d, \end{aligned}$$ ∂ ∂ t + ( - Δ ) 2 v ( t , x ) = σ W ˙ ( t , x ) , ( t , x ) ∈ ( 0 , T ] × T d , $$v(0,x)=v_0(x)$$ v ( 0 , x ) = v 0 ( x ) . We find the canonical pseudo-distance corresponding to the random field solution, therefore the precise description of the anisotropies of the process. We see that for $$d=2$$ d = 2 , they include a $$z(\log \tfrac{c}{z})^{1/2}$$ z ( log c z ) 1 / 2 term. Consider D independent copies of the random field solution to (0.1). Applying the criteria proved in Hinojosa-Calleja and Sanz-Solé (Stoch PDE Anal Comp 2021. 10.1007/s40072-021-00190-1), we establish upper and lower bounds for the probabilities that the path process hits bounded Borel sets.This yields results on the polarity of sets and on the Hausdorff dimension of the path process.


2022 ◽  
Author(s):  
◽  
Long Qian

<p><b>We investigate the geometry of effective Banach spaces, namely a sequenceof approximation properties that lies in between a Banach space having a basis and the approximation property.</b></p> <p>We establish some upper bounds on suchproperties, as well as proving some arithmetical lower bounds. Unfortunately,the upper bounds obtained in some cases are far away from the lower bound.</p> <p>However, we will show that much tighter bounds will require genuinely newconstructions, and resolve long-standing open problems in Banach space theory.</p> <p>We also investigate the effectivisations of certain classical theorems in Banachspaces.</p>


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Huyuan Chen ◽  
Laurent Véron

Abstract We provide bounds for the sequence of eigenvalues { λ i ⁢ ( Ω ) } i {\{\lambda_{i}(\Omega)\}_{i}} of the Dirichlet problem L Δ ⁢ u = λ ⁢ u ⁢  in  ⁢ Ω , u = 0 ⁢  in  ⁢ ℝ N ∖ Ω , L_{\Delta}u=\lambda u\text{ in }\Omega,\quad u=0\text{ in }\mathbb{R}^{N}% \setminus\Omega, where L Δ {L_{\Delta}} is the logarithmic Laplacian operator with Fourier transform symbol 2 ⁢ ln ⁡ | ζ | {2\ln\lvert\zeta\rvert} . The logarithmic Laplacian operator is not positively defined if the volume of the domain is large enough. In this article, we obtain the upper and lower bounds for the sum of the first k eigenvalues by extending the Li–Yau method and Kröger’s method, respectively. Moreover, we show the limit of the quotient of the sum of the first k eigenvalues by k ⁢ ln ⁡ k {k\ln k} is independent of the volume of the domain. Finally, we discuss the lower and upper bounds of the k-th principle eigenvalue, and the asymptotic behavior of the limit of eigenvalues.


2022 ◽  
Vol 2022 ◽  
pp. 1-5
Author(s):  
M. Hajjari ◽  
H. Abdollahzadeh Ahangar ◽  
R. Khoeilar ◽  
Z. Shao ◽  
S. M. Sheikholeslami

In this paper, we derive sharp upper and lower bounds on the sum γ 3 R G + γ 3 R G ¯ and product γ 3 R G γ 3 R G ¯ , where G ¯ is the complement of graph G . We also show that for each tree T of order n ≥ 2 , γ 3 R T ≤ 3 n + s T / 2 and γ 3 R T ≥ ⌈ 4 n T + 2 − ℓ T / 3 ⌉ , where s T and ℓ T are the number of support vertices and leaves of T .


Sign in / Sign up

Export Citation Format

Share Document