scholarly journals The Solution Classical Feedback Optimal Control Problem for m-Persons Differential Game with Imperfect Information

2013 ◽  
Vol 02 (01) ◽  
pp. 16-25 ◽  
Author(s):  
Jaykov Foukzon ◽  
Elena Men’kova ◽  
Alex Potapov
2014 ◽  
Vol 1042 ◽  
pp. 172-177
Author(s):  
Guang Yan Xu ◽  
Ping Li ◽  
Biao Zhou

The strategy of unmanned aerial vehicle air combat can be described as a differential game problem. The analytical solutions for the general differential game problem are usually difficult to obtain. In most cases, we can only get its numerical solutions. In this paper, a Nash differential game problem is converted to the corresponding differential variational inequality problem, and then converted into optimal control problem via D-gap function. The nonlinear continuous optimal control problem is obtained, which is easy to get numerical solutions. Compared with other conversion methods, the specific solving process of this method is more simple, so it has certain validity and feasibility.


2014 ◽  
Vol 511-512 ◽  
pp. 1063-1067 ◽  
Author(s):  
Hajer Bouzaouache ◽  
Naceur Benhadj Braiek

In this paper, the attention is focused on the optimization of a particular class of nonlinear systems. The optimum linear solution is not the best one so the problem of determining a nonlinear state feedback optimal control law with quadratic performance index over infinite time horizon is considered. It isn't an easy task and the most discouraging obstacle is the resolution of the Hamilton-Jacobi equation. Thus our contribution, based on the use of the tensor product and its algebraic laws, provide analytic solutions of the studied optimal control problem. The polynomial state feedback solution is computed through a numerical procedure. A numerical example is treated to illustrate the proposed solutions and some conclusions are drawn.


2020 ◽  
Vol 7 (3) ◽  
pp. 11-22
Author(s):  
VALERY ANDREEV ◽  
◽  
ALEXANDER POPOV

A reduced model has been developed to describe the time evolution of a discharge in an iron core tokamak, taking into account the nonlinear behavior of the ferromagnetic during the discharge. The calculation of the discharge scenario and program regime in the tokamak is formulated as an inverse problem - the optimal control problem. The methods for solving the problem are compared and the analysis of the correctness and stability of the control problem is carried out. A model of “quasi-optimal” control is proposed, which allows one to take into account real power sources. The discharge scenarios are calculated for the T-15 tokamak with an iron core.


Sign in / Sign up

Export Citation Format

Share Document