scholarly journals Blow-up of smooth solutions to the Navier-Stokes equations for compressible isothermal fluids

2013 ◽  
Vol 11 (2) ◽  
pp. 541-546 ◽  
Author(s):  
Dapeng Du ◽  
Jingyu Li ◽  
Kaijun Zhang
2010 ◽  
Vol 88 (2) ◽  
pp. 239-246 ◽  
Author(s):  
ZHONG TAN ◽  
YANJIN WANG

AbstractWe give a simpler and refined proof of some blow-up results of smooth solutions to the Cauchy problem for the Navier–Stokes equations of compressible, viscous and heat-conducting fluids in arbitrary space dimensions. Our main results reveal that smooth solutions with compactly supported initial density will blow up in finite time, and that if the initial density decays at infinity in space, then there is no global solution for which the velocity decays as the reciprocal of the elapsed time.


2017 ◽  
Vol 40 (14) ◽  
pp. 5262-5272 ◽  
Author(s):  
Guangwu Wang ◽  
Boling Guo ◽  
Shaomei Fang

Sign in / Sign up

Export Citation Format

Share Document