scholarly journals Infinitely many solutions for a nonlinear Navier boundary systems involving $(p(x),q(x))$-biharmonic

2014 ◽  
Vol 33 (1) ◽  
pp. 155
Author(s):  
Mostafa Allaoui ◽  
Abdel Rachid El Amrouss ◽  
Anass Ourraoui

In this article, we study the following $(p(x),q(x))$-biharmonic type system \begin{gather*} \Delta(|\Delta u|^{p(x)-2}\Delta u)=\lambda F_u(x,u,v)\quad\text{in }\Omega,\\ \Delta(|\Delta v|^{q(x)-2}\Delta v)=\lambda F_v(x,u,v)\quad\text{in }\Omega,\\ u=v=\Delta u=\Delta v=0\quad  \text{on }\partial\Omega. \end{gather*} We prove the existence of infinitely many solutions of the problem byapplying a general variational principle due to B. Ricceri and the theory of the variable exponent Sobolev spaces.

2017 ◽  
Vol 3 (1) ◽  
pp. 70-82
Author(s):  
A. Ahmed ◽  
M.S.B. Elemine Vall ◽  
A. Touzani

Abstract In this paper, we prove the existence of in finitely many solutions for the following system by applying a critical point variational principle obtained by Ricceri as a consequence of a more general variational principle and the theory of the anisotropic variable exponent Sobolev spaces 2010 Mathematics Subject Classification. 35K05 - 35K55.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Qing Miao

We improve some results on the existence and multiplicity of solutions for the(p1(x),…,pn(x))-biharmonic system. Our main results are new. Our approach is based on general variational principle and the theory of the variable exponent Sobolev spaces.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Yongqiang Fu ◽  
Miaomiao Yang

This paper is concerned with the functionalJdefined byJ(u)=∫Ω×ΩW(x,y,∇u(x),∇u(y))dx dy, whereΩ⊂ℝNis a regular open bounded set andWis a real-valued function with variable growth. After discussing the theory of Young measures in variable exponent Sobolev spaces, we study the weak lower semicontinuity and relaxation ofJ.


2021 ◽  
Vol 7 (1) ◽  
pp. 50-65
Author(s):  
Mustapha Ait Hammou ◽  
Elhoussine Azroul

AbstractThe aim of this paper is to establish the existence of solutions for a nonlinear elliptic problem of the form\left\{ {\matrix{{A\left( u \right) = f} \hfill & {in} \hfill & \Omega \hfill \cr {u = 0} \hfill & {on} \hfill & {\partial \Omega } \hfill \cr } } \right.where A(u) = −diva(x, u, ∇u) is a Leray-Lions operator and f ∈ W−1,p′(.)(Ω) with p(x) ∈ (1, ∞). Our technical approach is based on topological degree method and the theory of variable exponent Sobolev spaces.


Sign in / Sign up

Export Citation Format

Share Document