scholarly journals Clustering Natural Language Test Case Instructions as Input for Deriving Automotive Testing DSLs.

2021 ◽  
Vol 20 (3) ◽  
pp. 5:1
Author(s):  
Katharina Juhnke ◽  
Alexander Nikic ◽  
Matthias Tichy
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Fridah Katushemererwe ◽  
Andrew Caines ◽  
Paula Buttery

AbstractThis paper describes an endeavour to build natural language processing (NLP) tools for Runyakitara, a group of four closely related Bantu languages spoken in western Uganda. In contrast with major world languages such as English, for which corpora are comparatively abundant and NLP tools are well developed, computational linguistic resources for Runyakitara are in short supply. First therefore, we need to collect corpora for these languages, before we can proceed to the design of a spell-checker, grammar-checker and applications for computer-assisted language learning (CALL). We explain how we are collecting primary data for a new Runya Corpus of speech and writing, we outline the design of a morphological analyser, and discuss how we can use these new resources to build NLP tools. We are initially working with Runyankore–Rukiga, a closely-related pair of Runyakitara languages, and we frame our project in the context of NLP for low-resource languages, as well as CALL for the preservation of endangered languages. We put our project forward as a test case for the revitalization of endangered languages through education and technology.


2014 ◽  
Vol 95 ◽  
pp. 275-297 ◽  
Author(s):  
Gustavo Carvalho ◽  
Diogo Falcão ◽  
Flávia Barros ◽  
Augusto Sampaio ◽  
Alexandre Mota ◽  
...  

Author(s):  
JungHo Jeon ◽  
Xin Xu ◽  
Yuxi Zhang ◽  
Liu Yang ◽  
Hubo Cai

Construction inspection is an essential component of the quality assurance programs of state transportation agencies (STAs), and the guidelines for this process reside in lengthy textual specifications. In the current practice, engineers and inspectors must manually go through these documents to plan, conduct, and document their inspections, which is time-consuming, very subjective, inconsistent, and prone to error. A promising alternative to this manual process is the application of natural language processing (NLP) techniques (e.g., text parsing, sentence classification, and syntactic analysis) to automatically extract construction inspection requirements from textual documents and present them as straightforward check questions. This paper introduces an NLP-based method that: 1) extracts individual sentences from the construction specification; 2) preprocesses the resulting sentences; 3) applies Word2Vec and GloVe algorithms to extract vector features; 4) uses a convolutional neural network (CNN) and recurrent neural network to classify sentences; and 5) converts the requirement sentences into check questions via syntactic analysis. The overall methodology was assessed using the Indiana Department of Transportation (DOT) specification as a test case. Our results revealed that the CNN + GloVe combination led to the highest accuracy, at 91.9%, and the lowest loss, at 11.7%. To further validate its use across STAs nationwide, we applied it to the construction specification of the South Carolina DOT as a test case, and our average accuracy was 92.6%.


Sign in / Sign up

Export Citation Format

Share Document