promising alternative
Recently Published Documents


TOTAL DOCUMENTS

4006
(FIVE YEARS 2361)

H-INDEX

62
(FIVE YEARS 18)

2022 ◽  
Vol 153 ◽  
pp. 105882
Author(s):  
Alisson da Silva Santana ◽  
Edson Luiz Lopes Baldin ◽  
Thais Lohaine Braga dos Santos ◽  
Yago Alves Baptista ◽  
Maria Clezia dos Santos ◽  
...  

2022 ◽  
Vol 253 ◽  
pp. 115175
Author(s):  
Qidong Xu ◽  
Zengjia Guo ◽  
Lingchao Xia ◽  
Qijiao He ◽  
Zheng Li ◽  
...  

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Haoyu Wu ◽  
Zhi Peng ◽  
Ying Xu ◽  
Zixuan Sheng ◽  
Yanshan Liu ◽  
...  

Abstract Background Osteoarthritis (OA), a prevalent degenerative disease characterized by degradation of extracellular matrix (ECM), still lacks effective disease-modifying therapy. Mesenchymal stem cells (MSCs) transplantation has been regarded as the most promising approach for OA treatment while engrafting cells alone might not be adequate for effective regeneration. Genetic modification has been used to optimize MSC-based therapy; however, there are still significant limitations that prevent the clinical translation of this therapy including low efficacy and safety concerns. Recently, chemically modified mRNA (modRNA) represents a promising alternative for the gene-enhanced MSC therapy. In this regard, we hypothesized that adipose derived stem cells (ADSCs) engineered with modRNA encoding insulin-like growth factor 1 (IGF-1) were superior to native ADSCs on ameliorating OA development. Methods Mouse ADSCs were acquired from adipose tissue and transfected with modRNAs. First, the kinetics and efficacy of modRNA-mediated gene transfer in mouse ADSCs were analyzed in vitro. Next, we applied an indirect co-culture system to analyze the pro-anabolic potential of IGF-1 modRNA engineered ADSCs (named as IGF-1-ADSCs) on chondrocytes. Finally, we evaluated the cell retention and chondroprotective effect of IGF-1-ADSCs in vivo using fluorescent labeling, histology and immunohistochemistry. Results modRNA transfected mouse ADSCs with high efficiency (85 ± 5%) and the IGF-1 modRNA-transfected ADSCs facilitated burst-like production of bio-functional IGF-1 protein. In vitro, IGF-1-ADSCs induced increased anabolic markers expression of chondrocytes in inflammation environment compared to untreated ADSCs. In a murine OA model, histological and immunohistochemical analysis of knee joints harvested at 4 weeks and 8 weeks after OA induction suggested IGF-1-ADSCs had superior therapeutic effect over native ADSCs demonstrated by lower histological OARSI score and decreased loss of cartilage ECM. Conclusions These findings collectively supported the therapeutic potential of IGF-1-ADSCs for clinical OA management and cartilage repair.


2022 ◽  
Vol 14 (2) ◽  
pp. 63
Author(s):  
Rosanna Lorrane Francisco dos Reis Matos ◽  
Núbia Nunes de Souza ◽  
Sandro Morais dos Santos ◽  
Aline Ferreira Rafael ◽  
Eduardo Robson Duarte ◽  
...  

The mosquitoes Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae) are important vectors of several arboviruses, and are relevant public health problems. Conventional control, using chemical larvicides have selected resistant Culicidae populations and caused negative effects on the environment and human health. However, the use of plant extracts has represented a sustainable alternative for insect control. Popularly known as Xiriri, Mauritiella armata (Mart.) Burret (Aceraceae) is an abundant palm tree in Vereda ecosystems and has economic and social importance. In this study, the aim was to evaluate the larvicidal activity of the aqueous extract (AE) leaves of this plant on Ae. aegypti and Cx. quinquefasciatus larvae. The mortalities of larvae were analyzed after treatment with four concentrations of the extract, comparing with a negative control using mineral water. The AE promoted 100% efficacy against Ae. aegypti larvae at 7.9 mg/mL. The lethal concentration to promote 90% mortality of Cx. quinquefasciatus larvae was estimated at 30.57 mg/mL. After chromatographic analyses, flavonoids, catechin and carbohydrates were detected. AE from M. armata leaves presented high larvicidal activity against Ae. aegypti and Cx. quinquefasciatus, and represents a promising alternative to be used in vector control.


2022 ◽  
Vol 3 (1) ◽  
pp. 136-177
Author(s):  
Lucia García-Guzmán ◽  
Gustavo Cabrera-Barjas ◽  
Cintya G. Soria-Hernández ◽  
Johanna Castaño ◽  
Andrea Y. Guadarrama-Lezama ◽  
...  

The food packaging sector generates large volumes of plastic waste due to the high demand for packaged products with a short shelf-life. Biopolymers such as starch-based materials are a promising alternative to non-renewable resins, offering a sustainable and environmentally friendly food packaging alternative for single-use products. This article provides a chronology of the development of starch-based materials for food packaging. Particular emphasis is placed on the challenges faced in processing these materials using conventional processing techniques for thermoplastics and other emerging techniques such as electrospinning and 3D printing. The improvement of the performance of starch-based materials by blending with other biopolymers, use of micro- and nano-sized reinforcements, and chemical modification of starch is discussed. Finally, an overview of recent developments of these materials in smart food packaging is given.


Horticulturae ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 77
Author(s):  
Christian Höing ◽  
Sharvari Raut ◽  
Abozar Nasirahmadi ◽  
Barbara Sturm ◽  
Oliver Hensel

The state-of-the-art technique to control slug pests in agriculture is the spreading of slug pellets. This method has some downsides, because slug pellets also harm beneficials and often fail because their efficiency depends on the prevailing weather conditions. This study is part of a research project which is developing a pest control robot to monitor the field, detect slugs, and eliminate them. Robots represent a promising alternative to slug pellets. They work independent of weather conditions and can distinguish between pests and beneficials. As a prerequisite, a robot must be able to reliably identify slugs irrespective of the characteristics of the surrounding conditions. In this context, the utilization of computer vision and image analysis methods are challenging, because slugs look very similar to the soil, particularly in color images. Therefore, the goal of this study was to develop an optical filter-based system that distinguishes between slugs and soil. In this context, the spectral characteristics of both slugs and soil in the visible and visible near-infrared (VNIR) wavebands were measured. Conspicuous maxima followed by conspicuous local minima were found for the reflection spectra of slugs in the near infrared range from 850 nm to 990 nm]. Thus, this enabled differentiation between slugs and soils; soils showed a monotonic increase in the intensity of the relative reflection for this wavelength. The extrema determined in the reflection spectra of slugs were used to develop and set up a slug detector device consisting of a monochromatic camera, a filter changer and two narrow bandpass filters with nominal wavelengths of 925 nm and 975 nm. The developed optical system takes two photographs of the target area at night. By subtracting the pixel values of the images, the slugs are highlighted, and the soil is removed in the image due to the properties of the reflection spectra of soils and slugs. In the resulting image, the pixels of slugs were, on average, 12.4 times brighter than pixels of soil. This enabled the detection of slugs by a threshold method.


2022 ◽  
Vol 12 ◽  
Author(s):  
Xiaoxue Li ◽  
Ying Wang ◽  
Haiyuan Yang ◽  
Yifan Dai

About one-fifth of the population suffers from liver diseases in China, meaning that liver disorders are prominent causative factors relating to the Chinese mortality rate. For patients with end-stage liver diseases such as hepatocellular carcinoma or acute liver diseases with life-threatening liver dysfunction, allogeneic liver transplantation is the only life-saving treatment. Hepatocyte transplantation is a promising alternative for patients with acute liver failure or those considered high risk for major surgery, particularly for the bridge-to-transplant period. However, the lack of donors has become a serious global problem. The clinical application of porcine xenogeneic livers and hepatocytes remains a potential solution to alleviate the donor shortage. Pig grafts of xenotransplantation play roles in providing liver support in recipients, together with the occurrence of rejection, thrombocytopenia, and blood coagulation dysfunction. In this review, we present an overview of the development, potential therapeutic impact, and remaining barriers in the clinical application of pig liver and hepatocyte xenotransplantation to humans and non-human primates. Donor pigs with optimized genetic modification combinations and highly effective immunosuppressive regimens should be further explored to improve the outcomes of xenogeneic liver and hepatocyte transplantation.


Author(s):  
Jacek K Urbanek ◽  
David L Roth ◽  
Marta Karas ◽  
Amal A Wanigatunga ◽  
Christine M Mitchell ◽  
...  

Abstract Background Wearable devices have become widespread in research applications, yet evidence on whether they are superior to structured clinic-based assessments is sparse. In this manuscript, we compare traditional, lab-based metrics of mobility with a novel accelerometry-based measure of free-living gait cadence for predicting fall rates. Methods Using negative binomial regression, we compared traditional in-clinic measures of mobility (6-minute gait cadence, speed, and distance, and 4-meter gait speed) with free-living gait cadence from wearable accelerometers in predicting fall rates. Accelerometry data were collected with wrist-worn Actigraphs (GT9X) over 7 days in 432 community-dwelling older adults (aged 77.29±5.46 yrs, 59.1% men, 80.2% White) participating in the Study to Understand Fall Reduction and Vitamin D in You (STURDY). Falls were ascertained using monthly calendars, quarterly contacts, and ad-hoc telephone reports. Accelerometry-based free-living gait cadence was estimated with the Adaptive Empirical Pattern Transformation algorithm. Results Across all participants, free-living cadence was significantly related to fall rates; every 10 steps/min. higher cadence was associated with a 13.2% lower fall rate (p=0.036). Clinic-based measures of mobility were not related to falls (p>0.05). Among higher-functioning participants (cadence ≥100 steps/min.), every 10 steps/min higher free-living cadence was associated with a 27.7% lower fall rate (p=0.01). In participants with slow baseline gait (gait speed <0.8 m/s), all metrics were significantly associated with fall rates. Conclusion Data collected from biosensors in the free-living environment may provide a more sensitive indicator of fall risk than in-clinic tests, especially among higher functioning older adults who may be more responsive to intervention.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Alexandra Leeper ◽  
Ricardo Ekmay ◽  
Stephen Knobloch ◽  
Sigurlaug Skírnisdóttir ◽  
Madhushri Varunjikar ◽  
...  

AbstractAtlantic salmon aquaculture is expanding, and with it, the need to find suitable replacements for conventional protein sources used in formulated feeds. Torula yeast (Cyberlindnera jadinii), has been identified as a promising alternative protein for feed and can be sustainably cultivated on lignocellulosic biomasses. The present study investigated the impact of torula yeast on the growth performance and gut microbiome of freshwater Atlantic salmon. A marine protein base diet and a mixed marine and plant protein base diet were tested, where conventional proteins were replaced with increasing inclusion levels of torula yeast, (0%, 10%, 20%). This study demonstrated that 20% torula yeast can replace fish meal without alteration to growth performance while leading to potential benefits for the gut microbiome by increasing the presence of bacteria positively associated with the host. However, when torula yeast replaced plant meal in a mixed protein diet, results suggested that 10% inclusion of yeast produced the best growth performance results but at the 20% inclusion level of yeast, potentially negative changes were observed in the gut microbial community, such as a decrease in lactic acid bacteria. This study supports the continued investigation of torula yeast for Atlantic salmon as a partial replacement for conventional proteins.


Author(s):  
An-Di Dai ◽  
Xiao-Ling Tang ◽  
Zhe-Ming Wu ◽  
Jiang-Tao Tang ◽  
Ren-Chao Zheng ◽  
...  

Nitrilase-catalyzed hydrolysis of 2-chloronicotinonitrile (2-CN) is a promising approach for efficient synthesis of 2-chloronicotinic acid (2-CA). Development of nitrilase with ideal catalytic properties is crucial for the biosynthetic route with industrial potentail. Herein, a nitrilase from Rhodococcus zopfii ( Rz NIT), which showed much higher hydration activity than hydrolysis activity, was designed for efficient hydrolysis of 2-CN. Two residues (N165 and W167) significantly affecting the reaction specificity were precisely identified. By tuning these two residues, a single mutation of W167G with abolished hydration activity and 20-fold improved hydrolysis activity was obtained. Molecular dynamics simulation and molecular docking revealed that the mutation generated a larger binding pocket, causing the substrate 2-CN bound more deeply in the pocket and the formation of delocalized π bond between the residues W190 and Y196, which reduced the negative influence of steric hindrance and electron effect caused by chlorine substituent. With mutant W167G as biocatalyst, 100 mM 2-CN was exclusively converted into 2-CA within 16 h. The study provides useful guidance in nitrilase engineering for simultaneous improvement of reaction specificity and catalytic activity, which are highly desirable in value-added carboxylic acids production from nitriles hydrolysis. Importance 2-CA is an important building block for agrochemicals and pharmaceuticals with rapid increase in demand in recent years. It is currently manufactured from 3-cyanopyridine by chemical methods. However, during the final step of 2-CN hydrolysis under high temperature and strong alkaline conditions, by-product 2-CM was generated except for the target product, leading to low yield and tedious separation steps. Nitrilase-mediated hydrolysis is regarded as a promising alternative for 2-CA production, which proceeds under mild conditions. Nevertheless, nitrilase capable of efficient hydrolysis of 2-CN was not reported till now, since the enzymes showed either extremely low activity or surprisingly high hydration activity towards 2-CN. Herein, the reaction specificity of Rz NIT was precisely tuned through a single site mutation. The mutant exhibited remarkably enhanced hydrolysis activity without formation of by-products, providing a robust biocatalyst for 2-CA biosynthesis with industrial potential.


Sign in / Sign up

Export Citation Format

Share Document