scholarly journals Mutually Permutable Products of Finite Groups

ISRN Algebra ◽  
2011 ◽  
Vol 2011 ◽  
pp. 1-4
Author(s):  
Rola A. Hijazi

Let G be a finite group and G1, G2 are two subgroups of G. We say that G1 and G2 are mutually permutable if G1 is permutable with every subgroup of G2 and G2 is permutable with every subgroup of G1. We prove that if is the product of three supersolvable subgroups G1, G2, and G3, where Gi and Gj are mutually permutable for all i and j with and the Sylow subgroups of G are abelian, then G is supersolvable. As a corollary of this result, we also prove that if G possesses three supersolvable subgroups whose indices are pairwise relatively prime, and Gi and Gj are mutually permutable for all i and j with , then G is supersolvable.

2021 ◽  
Vol 58 (2) ◽  
pp. 147-156
Author(s):  
Qingjun Kong ◽  
Xiuyun Guo

We introduce a new subgroup embedding property in a finite group called s∗-semipermutability. Suppose that G is a finite group and H is a subgroup of G. H is said to be s∗-semipermutable in G if there exists a subnormal subgroup K of G such that G = HK and H ∩ K is s-semipermutable in G. We fix in every non-cyclic Sylow subgroup P of G some subgroup D satisfying 1 < |D| < |P | and study the structure of G under the assumption that every subgroup H of P with |H | = |D| is s∗-semipermutable in G. Some recent results are generalized and unified.


2019 ◽  
Vol 22 (2) ◽  
pp. 297-312 ◽  
Author(s):  
Victor S. Monakhov ◽  
Alexander A. Trofimuk

AbstractLetGbe a finite group. In this paper we obtain some sufficient conditions for the supersolubility ofGwith two supersoluble non-conjugate subgroupsHandKof prime index, not necessarily distinct. It is established that the supersoluble residual of such a group coincides with the nilpotent residual of the derived subgroup. We prove thatGis supersoluble in the following cases: one of the subgroupsHorKis nilpotent; the derived subgroup{G^{\prime}}ofGis nilpotent;{|G:H|=q>r=|G:K|}andHis normal inG. Also the supersolubility ofGwith two non-conjugate maximal subgroupsMandVis obtained in the following cases: all Sylow subgroups ofMand ofVare seminormal inG; all maximal subgroups ofMand ofVare seminormal inG.


2019 ◽  
Vol 12 (2) ◽  
pp. 571-576 ◽  
Author(s):  
Rola A. Hijazi ◽  
Fatme M. Charaf

Let G be a finite group. A subgroup H of G is said to be S-permutable in G if itpermutes with all Sylow subgroups of G. In this note we prove that if P, the Sylowp-subgroup of G (p > 2), has a subgroup D such that 1 <|D|<|P| and all subgroups H of P with |H| = |D| are S-permutable in G, then G′ is p-nilpotent.


2008 ◽  
Vol 01 (03) ◽  
pp. 369-382
Author(s):  
Nataliya V. Hutsko ◽  
Vladimir O. Lukyanenko ◽  
Alexander N. Skiba

Let G be a finite group and H a subgroup of G. Then H is said to be S-quasinormal in G if HP = PH for all Sylow subgroups P of G. Let HsG be the subgroup of H generated by all those subgroups of H which are S-quasinormal in G. Then we say that H is nearly S-quasinormal in G if G has an S-quasinormal subgroup T such that HT = G and T ∩ H ≤ HsG. Our main result here is the following theorem. Let [Formula: see text] be a saturated formation containing all supersoluble groups and G a group with a normal subgroup E such that [Formula: see text]. Suppose that every non-cyclic Sylow subgroup P of E has a subgroup D such that 1 < |D| < |P| and all subgroups H of P with order |H| = |D| and every cyclic subgroup of P with order 4 (if |D| = 2 and P is a non-abelian 2-group) having no supersoluble supplement in G are nearly S-quasinormal in G. Then [Formula: see text].


Author(s):  
Xuanli He ◽  
Qinghong Guo ◽  
Muhong Huang

Let [Formula: see text] be a finite group. A subgroup [Formula: see text] of [Formula: see text] is called to be [Formula: see text]-permutable in [Formula: see text] if [Formula: see text] permutes with all Sylow subgroups of [Formula: see text]. A subgroup [Formula: see text] of [Formula: see text] is said to be [Formula: see text]-supplemented in [Formula: see text] if there exists a subgroup [Formula: see text] of [Formula: see text] such that [Formula: see text] and [Formula: see text] is [Formula: see text]-permutable in [Formula: see text]. In this paper, we investigate [Formula: see text]-nilpotency of a finite group. As applications, we give some sufficient and necessary conditions for a finite group belongs to a saturated formation.


2016 ◽  
Vol 09 (03) ◽  
pp. 1650054
Author(s):  
E. N. Myslovets

Let [Formula: see text] be a class of finite simple groups. We say that a finite group [Formula: see text] is a [Formula: see text]-group if all composition factors of [Formula: see text] are contained in [Formula: see text]. A group [Formula: see text] is called [Formula: see text]-supersoluble if every chief [Formula: see text]-factor of [Formula: see text] is a simple group. In this paper, properties of mutually permutable products of [Formula: see text]-supersoluble finite groups are studied. Some earlier results on mutually permutable products of [Formula: see text]-supersoluble groups (SC-groups) appear as particular cases.


2012 ◽  
Vol 49 (3) ◽  
pp. 390-405
Author(s):  
Wenbin Guo ◽  
Alexander Skiba

Let G be a finite group and H a subgroup of G. H is said to be S-quasinormal in G if HP = PH for all Sylow subgroups P of G. Let HsG be the subgroup of H generated by all those subgroups of H which are S-quasinormal in G and HsG the intersection of all S-quasinormal subgroups of G containing H. The symbol |G|p denotes the order of a Sylow p-subgroup of G. We prove the followingTheorem A. Let G be a finite group and p a prime dividing |G|. Then G is p-supersoluble if and only if for every cyclic subgroup H ofḠ (G) of prime order or order 4 (if p = 2), Ḡhas a normal subgroup T such thatHsḠandH∩T=HsḠ∩T.Theorem B. A soluble finite group G is p-supersoluble if and only if for every 2-maximal subgroup E of G such that Op′ (G) ≦ E and |G: E| is not a power of p, G has an S-quasinormal subgroup T with cyclic Sylow p-subgroups such that EsG = ET and |E ∩ T|p = |EsG ∩ T|p.Theorem C. A finite group G is p-soluble if for every 2-maximal subgroup E of G such that Op′ (G) ≦ E and |G: E| is not a power of p, G has an S-quasinormal subgroup T such that EsG = ET and |E ∩ Tp = |EsG ∩ T|p.


2015 ◽  
Vol 52 (4) ◽  
pp. 504-510
Author(s):  
Mohamed Asaad

Let G be a finite group. A subgroup H of G is said to be s-permutable in G if H permutes with all Sylow subgroups of G. Let H be a subgroup of G and let HsG be the subgroup of H generated by all those subgroups of H which are s-permutable in G. A subgroup H of G is called n-embedded in G if G has a normal subgroup T such that HG = HT and H ∩ T ≦ HsG, where HG is the normal closure of H in G. We investigate the influence of n-embedded subgroups of the p-nilpotency and p-supersolvability of G.


2009 ◽  
Vol 52 (1) ◽  
pp. 145-150 ◽  
Author(s):  
YANGMING LI ◽  
LIFANG WANG ◽  
YANMING WANG

AbstractLet ℨ be a complete set of Sylow subgroups of a finite group G; that is to say for each prime p dividing the order of G, ℨ contains one and only one Sylow p-subgroup of G. A subgroup H of G is said to be ℨ-permutable in G if H permutes with every member of ℨ. In this paper we characterise the structure of finite groups G with the assumption that (1) all the subgroups of Gp ∈ ℨ are ℨ-permutable in G, for all prime p ∈ π(G), or (2) all the subgroups of Gp ∩ F*(G) are ℨ-permutable in G, for all Gp ∈ ℨ and p ∈ π(G), where F*(G) is the generalised Fitting subgroup of G.


Author(s):  
Qinghong Guo ◽  
Xuanli He ◽  
Muhong Huang

Let [Formula: see text] be a finite group. How minimal subgroups can be embedded in [Formula: see text] is a question of particular interest in studying the structure of [Formula: see text]. A subgroup [Formula: see text] of [Formula: see text] is called [Formula: see text]-permutable in [Formula: see text] if [Formula: see text] for all Sylow subgroups [Formula: see text] of [Formula: see text]. A subgroup [Formula: see text] of [Formula: see text] is called [Formula: see text]-embedded in [Formula: see text] if there exists a normal subgroup [Formula: see text] of [Formula: see text] such that [Formula: see text] and [Formula: see text], where [Formula: see text] is the subgroup of [Formula: see text] generated by all those subgroups of [Formula: see text] which are [Formula: see text]-permutable in [Formula: see text]. In this paper, we investigate the structure of the finite group [Formula: see text] with [Formula: see text]-embedded subgroups.


Sign in / Sign up

Export Citation Format

Share Document