fitting subgroup
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 9)

H-INDEX

7
(FIVE YEARS 1)

Author(s):  
Eloisa Detomi ◽  
Pavel Shumyatsky

Let $K$ be a subgroup of a finite group $G$ . The probability that an element of $G$ commutes with an element of $K$ is denoted by $Pr(K,G)$ . Assume that $Pr(K,G)\geq \epsilon$ for some fixed $\epsilon >0$ . We show that there is a normal subgroup $T\leq G$ and a subgroup $B\leq K$ such that the indices $[G:T]$ and $[K:B]$ and the order of the commutator subgroup $[T,B]$ are $\epsilon$ -bounded. This extends the well-known theorem, due to P. M. Neumann, that covers the case where $K=G$ . We deduce a number of corollaries of this result. A typical application is that if $K$ is the generalized Fitting subgroup $F^{*}(G)$ then $G$ has a class-2-nilpotent normal subgroup $R$ such that both the index $[G:R]$ and the order of the commutator subgroup $[R,R]$ are $\epsilon$ -bounded. In the same spirit we consider the cases where $K$ is a term of the lower central series of $G$ , or a Sylow subgroup, etc.


Author(s):  
Shuaibu Garba Ngulde ◽  

Frattini subgroup, Φ(G), of a group G is the intersection of all the maximal subgroups of G, or else G itself if G has no maximal subgroups. If G is a p-group, then Φ(G) is the smallest normal subgroup N such the quotient group G/N is an elementary abelian group. It is against this background that the concept of p-subgroup and fitting subgroup play a significant role in determining Frattini subgroup (especially its order) of dihedral groups. A lot of scholars have written on Frattini subgroup, but no substantial relationship has so far been identified between the parent group G and its Frattini subgroup Φ(G) which this tries to establish using the approach of Jelten B. Napthali who determined some internal properties of non abelian groups where the centre Z(G) takes its maximum size.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sajjad Mahmood Robati ◽  
Roghayeh Hafezieh Balaman

Abstract For a finite group 𝐺, an element is called a vanishing element of 𝐺 if it is a zero of an irreducible character of 𝐺; otherwise, it is called a non-vanishing element. Moreover, the conjugacy class of an element is called a vanishing class if that element is a vanishing element. In this paper, we describe finite groups whose vanishing class sizes are all prime powers, and on the other hand we show that non-vanishing elements of such a group lie in the Fitting subgroup which is a proof of a conjecture mentioned in [I. M. Isaacs, G. Navarro and T. R. Wolf, Finite group elements where no irreducible character vanishes, J. Algebra 222 (1999), 2, 413–423] under this special restriction on vanishing class sizes.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Stefanos Aivazidis ◽  
Thomas Müller

Abstract Theorem C in [S. Dolfi, M. Herzog, G. Kaplan and A. Lev, The size of the solvable residual in finite groups, Groups Geom. Dyn. 1 (2007), 4, 401–407] asserts that, in a finite group with trivial Fitting subgroup, the size of the soluble residual of the group is bounded from below by a certain power of the group order and that the inequality is sharp. Inspired by this result and some of the arguments in the above article, we establish the following generalisation: if 𝔛 is a subgroup-closed Fitting formation of full characteristic which does not contain all finite groups and X ¯ \overline{\mathfrak{X}} is the extension-closure of 𝔛, then there exists an (explicitly known and optimal) constant 𝛾 depending only on 𝔛 such that, for all non-trivial finite groups 𝐺 with trivial 𝔛-radical, | G X ¯ | > | G | γ \lvert G^{\overline{\mathfrak{X}}}\rvert>\lvert G\rvert^{\gamma} , where G X ¯ G^{\overline{\mathfrak{X}}} is the X ¯ \overline{\mathfrak{X}} -residual of 𝐺. When X = N \mathfrak{X}=\mathfrak{N} , the class of finite nilpotent groups, it follows that X ¯ = S \overline{\mathfrak{X}}=\mathfrak{S} , the class of finite soluble groups; thus we recover the original theorem of Dolfi, Herzog, Kaplan, and Lev. In the last section of our paper, building on J. G. Thompson’s classification of minimal simple groups, we exhibit a family of subgroup-closed Fitting formations 𝔛 of full characteristic such that S ⊂ X ¯ ⊂ E \mathfrak{S}\subset\overline{\mathfrak{X}}\subset\mathfrak{E} , where 𝔈 denotes the class of all finite groups, thus providing applications of our main result beyond the reach of the above theorem.


Author(s):  
E. I. Khukhro ◽  
P. Shumyatsky

AbstractA left Engel sink of an elementgof a groupGis a set$${\mathscr {E}}(g)$$E(g)such that for every$$x\in G$$x∈Gall sufficiently long commutators$$[...[[x,g],g],\dots ,g]$$[...[[x,g],g],⋯,g]belong to$${\mathscr {E}}(g)$$E(g). (Thus,gis a left Engel element precisely when we can choose$${\mathscr {E}}(g)=\{ 1\}$$E(g)={1}.) We prove that if a finite groupGadmits an automorphism$$\varphi $$φof prime order coprime to |G| such that for some positive integermevery element of the centralizer$$C_G(\varphi )$$CG(φ)has a left Engel sink of cardinality at mostm, then the index of the second Fitting subgroup$$F_2(G)$$F2(G)is bounded in terms ofm. A right Engel sink of an elementgof a groupGis a set$${\mathscr {R}}(g)$$R(g)such that for every$$x\in G$$x∈Gall sufficiently long commutators$$[\ldots [[g,x],x],\dots ,x]$$[…[[g,x],x],⋯,x]belong to$${\mathscr {R}}(g)$$R(g). (Thus,gis a right Engel element precisely when we can choose$${\mathscr {R}}(g)=\{ 1\}$$R(g)={1}.) We prove that if a finite groupGadmits an automorphism$$\varphi $$φof prime order coprime to |G| such that for some positive integermevery element of the centralizer$$C_G(\varphi )$$CG(φ)has a right Engel sink of cardinality at mostm, then the index of the Fitting subgroup$$F_1(G)$$F1(G)is bounded in terms ofm.


2019 ◽  
Vol 22 (6) ◽  
pp. 1059-1068
Author(s):  
Emerson de Melo

Abstract Let q be a prime and A a finite q-group of exponent q acting by automorphisms on a finite {q^{\prime}} -group G. Assume that A has order at least {q^{3}} . We show that if {\gamma_{\infty}(C_{G}(a))} has order at most m for any {a\in A^{\#}} , then the order of {\gamma_{\infty}(G)} is bounded solely in terms of m. If the Fitting subgroup of {C_{G}(a)} has index at most m for any {a\in A^{\#}} , then the second Fitting subgroup of G has index bounded solely in terms of m.


2019 ◽  
Vol 22 (5) ◽  
pp. 809-836
Author(s):  
Derek J. S. Robinson

Abstract A comprehensive account is given of the theory of metanilpotent groups with the minimal condition on normal subgroups. After reviewing classical material, many new results are established relating to the Fitting subgroup, the Hirsch–Plotkin radical, the Frattini subgroup, splitting and conjugacy, the Schur multiplier, Sylow structure and the maximal subgroups. Module theoretic and homological methods are used throughout.


2019 ◽  
Vol 109 (3) ◽  
pp. 340-350
Author(s):  
E. I. KHUKHRO ◽  
P. SHUMYATSKY ◽  
G. TRAUSTASON

AbstractLet $g$ be an element of a finite group $G$ and let $R_{n}(g)$ be the subgroup generated by all the right Engel values $[g,_{n}x]$ over $x\in G$. In the case when $G$ is soluble we prove that if, for some $n$, the Fitting height of $R_{n}(g)$ is equal to $k$, then $g$ belongs to the $(k+1)$th Fitting subgroup $F_{k+1}(G)$. For nonsoluble $G$, it is proved that if, for some $n$, the generalized Fitting height of $R_{n}(g)$ is equal to $k$, then $g$ belongs to the generalized Fitting subgroup $F_{f(k,m)}^{\ast }(G)$ with $f(k,m)$ depending only on $k$ and $m$, where $|g|$ is the product of $m$ primes counting multiplicities. It is also proved that if, for some $n$, the nonsoluble length of $R_{n}(g)$ is equal to $k$, then $g$ belongs to a normal subgroup whose nonsoluble length is bounded in terms of $k$ and $m$. Earlier, similar generalizations of Baer’s theorem (which states that an Engel element of a finite group belongs to the Fitting subgroup) were obtained by the first two authors in terms of left Engel-type subgroups.


2018 ◽  
Vol 100 (1) ◽  
pp. 61-67
Author(s):  
EMERSON DE MELO ◽  
PAVEL SHUMYATSKY

Let $q$ be a prime and let $A$ be an elementary abelian group of order at least $q^{3}$ acting by automorphisms on a finite $q^{\prime }$-group $G$. We prove that if $|\unicode[STIX]{x1D6FE}_{\infty }(C_{G}(a))|\leq m$ for any $a\in A^{\#}$, then the order of $\unicode[STIX]{x1D6FE}_{\infty }(G)$ is $m$-bounded. If $F(C_{G}(a))$ has index at most $m$ in $C_{G}(a)$ for any $a\in A^{\#}$, then the index of $F_{2}(G)$ is $m$-bounded.


Sign in / Sign up

Export Citation Format

Share Document