scholarly journals Corrigendum to "Refinements of Goldbach's conjecture, and the Generalized Riemann Hypothesis"

2008 ◽  
Vol 38 (2) ◽  
pp. 235-237
Author(s):  
Andrew Granville
Author(s):  
Frank Vega

In mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1/2. Many consider it to be the most important unsolved problem in pure mathematics. It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a US 1,000,000 prize for the first correct solution. We prove the Riemann hypothesis using the Complexity Theory. Number theory is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. The Goldbach's conjecture is one of the most important and unsolved problems in number theory. Nowadays, it is one of the open problems of Hilbert and Landau. We show the Goldbach's conjecture is true using the Complexity Theory as well. An important complexity class is 1NSPACE(S(n)) for some S(n). These mathematical proofs are based on if some unary language belongs to 1NSPACE(S(log n)), then the binary version of that language belongs to 1NSPACE(S(n)) and vice versa.


Author(s):  
Frank Vega

The Goldbach's conjecture has been described as the most difficult problem in the history of Mathematics. This conjecture states that every even integer greater than 2 can be written as the sum of two primes. This is known as the strong Goldbach's conjecture. The conjecture that all odd numbers greater than 7 are the sum of three odd primes is known today as the weak Goldbach conjecture. A principal complexity class is NSPACE(S(n)) for some S(n). We show if the weak Goldbach's conjecture is true, then the problem PRIMES is not in NSPACE(S(n)) for all S(n) = o(log n). This proof is based on the assumption that if some language belongs to NSPACE(S(n)), then the unary version of that language belongs to NSPACE(S(log n)) and vice versa. However, if PRIMES is not in NSPACE(S(n)) for all S(n) = o(log n), then the strong Goldbach's conjecture is true or this has an infinite number of counterexamples. Since Harald Helfgott proved that the weak Goldbach's conjecture is true, then the strong Goldbach's conjecture is true or this has an infinite number of counterexamples, where the case of infinite number of counterexamples statistically seems to be unlikely. In addition, if PRIMES is not in NSPACE(S(n)) for all S(n) = o(log n), then the Twin prime conjecture is true. Moreover, if PRIMES is not in NSPACE(S(n)) for all S(n) = o(log n), then the Beal's conjecture is true. Since the Beal's conjecture is a generalization of Fermat's Last Theorem, then this is also a simple and short proof for that Theorem. In mathematics, the Riemann hypothesis is consider to be the most important unsolved problem in pure mathematics. If PRIMES is not in NSPACE(S(n)) for all S(n) = o(log n), then the Riemann hypothesis is true.


Author(s):  
Frank Vega

In mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1/2. Many consider it to be the most important unsolved problem in pure mathematics. It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a US 1,000,000 prize for the first correct solution. We prove the Riemann hypothesis using the Complexity Theory. Number theory is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. The Goldbach's conjecture is one of the most important and unsolved problems in number theory. Nowadays, it is one of the open problems of Hilbert and Landau. We show the Goldbach's conjecture is true using the Complexity Theory as well. An important complexity class is 1NSPACE(S(n)) for some S(n). These mathematical proofs are based on if some unary language belongs to 1NSPACE(S(log n)), then the binary version of that language belongs to 1NSPACE(S(n)) and vice versa.


Author(s):  
Frank Vega

In mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1/2. Many consider it to be the most important unsolved problem in pure mathematics. It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a US 1,000,000 prize for the first correct solution. We prove the Riemann hypothesis using the Complexity Theory. Number theory is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. The Goldbach's conjecture is one of the most important and unsolved problems in number theory. Nowadays, it is one of the open problems of Hilbert and Landau. We show the Goldbach's conjecture is true or this has an infinite number of counterexamples using the Complexity Theory as well. An important complexity class is 1NSPACE(S(n)) for some S(n). These mathematical proofs are based on if some unary language belongs to 1NSPACE(S(log n)), then the binary version of that language belongs to 1NSPACE(S(n)) and vice versa.


Author(s):  
Frank Vega

The strong Goldbach's conjecture states that every even integer greater than 2 can be written as the sum of two primes. The conjecture that all odd numbers greater than 7 are the sum of three odd primes is known today as the weak Goldbach conjecture. A principal complexity class is NSPACE(S(n)) for some S(n). We show if the weak Goldbach's conjecture is true, then the problem PRIMES is not in NSPACE(S(n)) for all S(n) = o(log n). However, if this happens, then the strong Goldbach's conjecture is true or this has an infinite number of counterexamples. In addition, if this happens, then the Twin prime conjecture is true. Moreover, if this happens, then the Beal's conjecture is true. Furthermore, if this happens, then the Riemann hypothesis is true. Since the weak Goldbach's conjecture was proven, then this will certainly happen.


1989 ◽  
Vol 32 (4) ◽  
pp. 474-478 ◽  
Author(s):  
R. A. Mollin ◽  
H. C. Williams

AbstractWe will be looking at quadratic polynomials having positive discriminant and having a long string of primes as initial values. We find conditions tantamount to this phenomenon involving another long string of primes for which the discriminant of the polynomial is a quadratic non-residue. Using the generalized Riemann hypothesis (GRH) we are able to determine all discriminants satisfying this connection.


2019 ◽  
Vol 16 (02) ◽  
pp. 309-323
Author(s):  
D. S. Ramana ◽  
O. Ramaré

We show under the Generalized Riemann Hypothesis that for every non-constant integer-valued polynomial [Formula: see text], for every [Formula: see text], and almost every prime [Formula: see text] in [Formula: see text], the number of primes from the interval [Formula: see text] that are values of [Formula: see text] modulo [Formula: see text] is the expected one, provided [Formula: see text] is not more than [Formula: see text]. We obtain this via a variant of the classical truncated Perron’s formula for the partial sums of the coefficients of a Dirichlet series.


2013 ◽  
Vol 149 (4) ◽  
pp. 507-567 ◽  
Author(s):  
Patrik Hubschmid

AbstractWe consider the analogue of the André–Oort conjecture for Drinfeld modular varieties which was formulated by Breuer. We prove this analogue for special points with separable reflex field over the base field by adapting methods which were used by Klingler and Yafaev to prove the André–Oort conjecture under the generalized Riemann hypothesis in the classical case. Our result extends results of Breuer showing the correctness of the analogue for special points lying in a curve and for special points having a certain behaviour at a fixed set of primes.


Sign in / Sign up

Export Citation Format

Share Document