scholarly journals Session Based Ciphertext Policy Attribute Based Encryption Method for Access Control in Cloud Storage

2014 ◽  
Vol 4 (9) ◽  
pp. 21-25
Author(s):  
Priyanka Rajput
2014 ◽  
Vol 571-572 ◽  
pp. 79-89
Author(s):  
Ting Zhong ◽  
You Peng Sun ◽  
Qiao Liu

In the cloud storage system, the server is no longer trusted, which is different from the traditional storage system. Therefore, it is necessary for data owners to encrypt data before outsourcing it for sharing. Simultaneously, the enforcement of access policies and support of policies updates becomes one of the most challenging issues. Ciphertext-policy attribute-based encryption (CP-ABE) is an appropriate solution to this issue. However, it comes with a new obstacle which is the attribute and user revocation. In this paper, we propose a fine-grained access control scheme with efficient revocation based on CP-ABE approach. In the proposed scheme, we not only realize an efficient and immediate revocation, but also eliminate some burden of computational overhead. The analysis results indicate that the proposed scheme is efficient and secure for access control in cloud storage systems.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Guangbo Wang ◽  
Jianhua Wang

Attribute-based encryption (ABE) scheme is more and more widely used in the cloud storage, which can achieve fine-grained access control. However, it is an important challenge to solve dynamic user and attribute revocation in the original scheme. In order to solve this problem, this paper proposes a ciphertext-policy ABE (CP-ABE) scheme which can achieve attribute level user attribution. In this scheme, if some attribute is revoked, then the ciphertext corresponding to this attribute will be updated so that only the individuals whose attributes meet the access control policy and have not been revoked will be able to carry out the key updating and decrypt the ciphertext successfully. This scheme is proved selective-structure secure based on the q-Parallel Bilinear Diffie-Hellman Exponent (BDHE) assumption in the standard model. Finally, the performance analysis and experimental verification have been carried out in this paper, and the experimental results show that, compared with the existing revocation schemes, although our scheme increases the computational load of storage service provider (CSP) in order to achieve the attribute revocation, it does not need the participation of attribute authority (AA), which reduces the computational load of AA. Moreover, the user does not need any additional parameters to achieve the attribute revocation except for the private key, thus saving the storage space greatly.


2013 ◽  
Vol 14 (2) ◽  
pp. 85-97 ◽  
Author(s):  
Yong Cheng ◽  
Zhi-ying Wang ◽  
Jun Ma ◽  
Jiang-jiang Wu ◽  
Song-zhu Mei ◽  
...  

2019 ◽  
Vol 62 (12) ◽  
pp. 1748-1760 ◽  
Author(s):  
Yang Chen ◽  
Wenmin Li ◽  
Fei Gao ◽  
Wei Yin ◽  
Kaitai Liang ◽  
...  

AbstractOnline data sharing has become a research hotspot while cloud computing is getting more and more popular. As a promising encryption technique to guarantee the security shared data and to realize flexible fine-grained access control, ciphertext-policy attribute-based encryption (CP-ABE) has drawn wide attentions. However, there is a drawback preventing CP-ABE from being applied to cloud applications. In CP-ABE, the access structure is included in the ciphertext, and it may disclose user’s privacy. In this paper, we find a more efficient method to connect ABE with inner product encryption and adopt several techniques to ensure the expressiveness of access structure, the efficiency and security of our scheme. We are the first to present a secure, efficient fine-grained access control scheme with hidden access structure, the access structure can be expressed as AND-gates on multi-valued attributes with wildcard. We conceal the entire attribute instead of only its values in the access structure. Besides, our scheme has obvious advantages in efficiency compared with related schemes. Our scheme can make data sharing secure and efficient, which can be verified from the analysis of security and performance.


2019 ◽  
Vol 15 (4) ◽  
pp. 155014771984127 ◽  
Author(s):  
Gang Yu ◽  
Yongjuan Wang ◽  
Zhenfu Cao ◽  
Jian Lin ◽  
Xiangyu Wang

Sign in / Sign up

Export Citation Format

Share Document