algebra groups
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

2020 ◽  
Author(s):  
Ara Aleksanyan
Keyword(s):  

Դասագիրքն ամփոփում է վերջին տասնամյակում հեղինակի կողմից ԵՊՀ Ինֆորմատիկայի և կիրառական մաթեմատիկայի ֆակուլտետում կարդացվող դասախոսությունները։ Ֆակուլտետի ուսումնական պլանով հաստատված «Հանրահաշիվ» առարկայի ծրագիրը հիմնված է հեղինակի այս և «Գծային հանրահաշիվ» դասագրքերում ներառված նյութի վրա։



2020 ◽  
Author(s):  
Ara Aleksanyan

The textbook summarizes the lectures delivered by the author in the last decade at YSU Faculty of Informatics and Applied Mathematics. The syllabus of the subject “Algebra” approved by the faculty curriculum is based on the materials included in the author’s textbooks of “Linear Algebra”. (in Armenian)



2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Aleksandr Nikolaevich Panov

AbstractWe construct a few supercharacter theories for finite semidirect products where the normal subgroup is of algebra group type. In the case of algebra groups, these supercharacter theories coincide with those of P. Diaconis and I. M. Isaacs. For the parabolic subgroups of \mathrm{GL}(n,\mathbb{F}_{q}), the supercharacters and superclasses are classified.





2015 ◽  
Vol 430 ◽  
pp. 159-190 ◽  
Author(s):  
Carlos A.M. André ◽  
Pedro J. Freitas ◽  
Ana Margarida Neto


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Scott Andrews

International audience \textbfAbstract. We construct supercharacter theories of finite unipotent groups in the orthogonal, symplectic and unitary types. Our method utilizes group actions in a manner analogous to that of Diaconis and Isaacs in their construction of supercharacters of algebra groups. The resulting supercharacter theories agree with those of André and Neto in the case of the unipotent orthogonal and symplectic matrices and generalize to a large collection of subgroups. In the unitary group case, we describe the supercharacters and superclasses in terms of labeled set partitions and calculate the supercharacter table. \bigbreak



2013 ◽  
Vol 50 ◽  
pp. 139-158 ◽  
Author(s):  
Marcus Bishop ◽  
J. Matthew Douglass ◽  
Götz Pfeiffer ◽  
Gerhard Röhrle


2011 ◽  
Vol 228 (5) ◽  
pp. 2743-2765 ◽  
Author(s):  
Eric Marberg
Keyword(s):  


2011 ◽  
Vol 325 (1) ◽  
pp. 321-351 ◽  
Author(s):  
Anton Evseev


2007 ◽  
Vol 360 (05) ◽  
pp. 2359-2393 ◽  
Author(s):  
Persi Diaconis ◽  
I. M. Isaacs
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document