symbolic flow
Recently Published Documents


TOTAL DOCUMENTS

1
(FIVE YEARS 1)

H-INDEX

0
(FIVE YEARS 0)

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
David Burguet ◽  
Ruxi Shi

<p style='text-indent:20px;'>A zero-dimensional (resp. symbolic) flow is a suspension flow over a zero-dimensional system (resp. a subshift). We show that any topological flow admits a principal extension by a zero-dimensional flow. Following [<xref ref-type="bibr" rid="b6">6</xref>] we deduce that any topological flow admits an extension by a symbolic flow if and only if its time-<inline-formula><tex-math id="M1">\begin{document}$ t $\end{document}</tex-math></inline-formula> map admits an extension by a subshift for any <inline-formula><tex-math id="M2">\begin{document}$ t\neq 0 $\end{document}</tex-math></inline-formula>. Moreover the existence of such an extension is preserved under orbit equivalence for regular topological flows, but this property does not hold for singular flows. Finally we investigate symbolic extensions for singular suspension flows. In particular, the suspension flow over the full shift on <inline-formula><tex-math id="M3">\begin{document}$ \{0,1\}^{\mathbb Z} $\end{document}</tex-math></inline-formula> with a roof function <inline-formula><tex-math id="M4">\begin{document}$ f $\end{document}</tex-math></inline-formula> vanishing at the zero sequence <inline-formula><tex-math id="M5">\begin{document}$ 0^\infty $\end{document}</tex-math></inline-formula> admits a principal symbolic extension or not depending on the smoothness of <inline-formula><tex-math id="M6">\begin{document}$ f $\end{document}</tex-math></inline-formula> at <inline-formula><tex-math id="M7">\begin{document}$ 0^\infty $\end{document}</tex-math></inline-formula>.</p>


Sign in / Sign up

Export Citation Format

Share Document