left invariant differential operator
Recently Published Documents


TOTAL DOCUMENTS

1
(FIVE YEARS 0)

H-INDEX

0
(FIVE YEARS 0)

Author(s):  
Mattia Calzi ◽  
Fulvio Ricci

AbstractWe study the functional calculus associated with a hypoelliptic left-invariant differential operator $$\mathcal {L}$$ L on a connected and simply connected nilpotent Lie group G with the aid of the corresponding Rockland operator $$\mathcal {L}_0$$ L 0 on the ‘local’ contraction $$G_0$$ G 0 of G, as well as of the corresponding Rockland operator $$\mathcal {L}_\infty $$ L ∞ on the ‘global’ contraction $$G_\infty $$ G ∞ of G. We provide asymptotic estimates of the Riesz potentials associated with $$\mathcal {L}$$ L at 0 and at $$\infty $$ ∞ , as well as of the kernels associated with functions of $$\mathcal {L}$$ L satisfying Mihlin conditions of every order. We also prove some Mihlin–Hörmander multiplier theorems for $$\mathcal {L}$$ L which generalize analogous results to the non-homogeneous case. Finally, we extend the asymptotic study of the density of the ‘Plancherel measure’ associated with $$\mathcal {L}$$ L from the case of a quasi-homogeneous sub-Laplacian to the case of a quasi-homogeneous sum of even powers.



Sign in / Sign up

Export Citation Format

Share Document