hermite ring
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

2020 ◽  
Vol 8 (1) ◽  
pp. 88-91
Author(s):  
Amol Sasane

AbstractThe set 𝒜 := 𝔺δ0+ 𝒟+′, obtained by attaching the identity δ0 to the set 𝒟+′ of all distributions on 𝕉 with support contained in (0, ∞), forms an algebra with the operations of addition, convolution, multiplication by complex scalars. It is shown that 𝒜 is a Hermite ring, that is, every finitely generated stably free 𝒜-module is free, or equivalently, every tall left-invertible matrix with entries from 𝒜 can be completed to a square matrix with entries from 𝒜, which is invertible.



2011 ◽  
Vol 10 (06) ◽  
pp. 1343-1350
Author(s):  
MOHAMMED KABBOUR ◽  
NAJIB MAHDOU

Let f : A → B be a ring homomorphism and let J be an ideal of B. In this paper, we investigate the transfer of notions elementary divisor ring, Hermite ring and Bézout ring to the amalgamation A ⋈f J. We provide necessary and sufficient conditions for A ⋈f J to be an elementary divisor ring where A and B are integral domains. In this case it is shown that A ⋈f J is an Hermite ring if and only if it is a Bézout ring. In particular, we study the transfer of the previous notions to the amalgamated duplication of a ring A along an A-submodule E of Q(A) such that E2 ⊆ E.



2010 ◽  
Vol 62 (1) ◽  
pp. 151-154
Author(s):  
A. I. Hatalevych
Keyword(s):  


2008 ◽  
Vol 320 (1) ◽  
pp. 437-441 ◽  
Author(s):  
Ihsen Yengui
Keyword(s):  


1974 ◽  
Vol 26 (6) ◽  
pp. 1380-1383 ◽  
Author(s):  
Thomas S. Shores ◽  
Roger Wiegand

Recall that a ring R (all rings considered are commutative with unit) is an elementary divisor ring (respectively, a Hermite ring) provided every matrix over R is equivalent to a diagonal matrix (respectively, a triangular matrix). Thus, every elementary divisor ring is Hermite, and it is easily seen that a Hermite ring is Bezout, that is, finitely generated ideals are principal. Examples have been given [4] to show that neither implication is reversible.



Sign in / Sign up

Export Citation Format

Share Document