symmetric crosscap number
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 0)

H-INDEX

1
(FIVE YEARS 0)

2016 ◽  
Vol 103 (2) ◽  
pp. 145-156
Author(s):  
ADRIÁN BACELO

Every finite group $G$ acts on some nonorientable unbordered surfaces. The minimal topological genus of those surfaces is called the symmetric crosscap number of $G$. It is known that 3 is not the symmetric crosscap number of any group but it remains unknown whether there are other such values, called gaps. In this paper we obtain group presentations which allow one to find the actions realizing the symmetric crosscap number of groups of each group of order less than or equal to 63.


2012 ◽  
Vol 12 (02) ◽  
pp. 1250164 ◽  
Author(s):  
J. J. ETAYO ◽  
E. MARTÍNEZ

Every finite group G acts as an automorphism group of some non-orientable Klein surfaces without boundary. The minimal genus of these surfaces is called the symmetric crosscap number and denoted by [Formula: see text]. It is known that 3 cannot be the symmetric crosscap number of a group. Conversely, it is also known that all integers that do not belong to nine classes modulo 144 are the symmetric crosscap number of some group. Here we obtain infinitely many groups whose symmetric crosscap number belong to each one of six of these classes. This result supports the conjecture that 3 is the unique integer which is not the symmetric crosscap number of a group. On the other hand, there are infinitely many groups with symmetric crosscap number 1 or 2. For g > 2 the number of groups G with [Formula: see text] is finite. The value of [Formula: see text] is known when G belongs to certain families of groups. In particular, if o(G) < 32, [Formula: see text] is known for all except thirteen groups. In this work we obtain it for these groups by means of a one-by-one analysis. Finally we obtain the least genus greater than two for those exceptional groups whose symmetric crosscap number is 1 or 2.


Sign in / Sign up

Export Citation Format

Share Document