Experimental studies on interlaminar shear strength and dynamic mechanical analysis of luffa fiber epoxy composites with nano PbO addition

2021 ◽  
pp. 152808372110523
Author(s):  
Kumaresan Gladys Ashok ◽  
Kalaichelvan Kani

In the present study, the significance of nanofiller lead oxide (PbO) on the dynamic mechanical analysis (DMA) and interlaminar shear strength (ILSS) performance of luffa fiber–reinforced epoxy composites was investigated. The epoxy matrix was altered with nanofiller PbO of different weight percent through a mechanical stirring process. The PbO-added luffa fiber epoxy composites were made through hand layup preceded by the compression molding method. The prepared composite samples were investigated for ILSS and DMA. The test results lead to the inference that the 1.25 wt% PbO nanofiller–added composite samples attained 25%, 17%, and 55% of higher loss modulus, storage modulus, and ILSS, respectively, as compared with the other prepared samples. The morphological investigation was conducted on the fractured surface of the interlaminar tested samples. The micrographic images show the bonding nature of the luffa fiber with the epoxy matrix, fiber breakage, and fiber pullouts. The characterization studies such as FTIR, XRD, and EDX were conducted on the fabricated composite samples. The XRD studies show that the rise in weight percent of the nanofiller PbO enhances the crystallinity of the composite samples. Moreover, the composite sample prepared with 1.25 wt% nanofiller PbO can be used to prepare low-cost roofing materials for sustainable housing projects.

2009 ◽  
Vol 79-82 ◽  
pp. 497-500 ◽  
Author(s):  
Lei Chen ◽  
Zhi Wei Xu ◽  
Jia Lu Li ◽  
Xiao Qing Wu ◽  
Li Chen

The γ-ray co-irradiation method was employed to study the effect of diethanolamine modification on the surface of carbon fiber (CF) and the interfacial properties of CF/epoxy composites. Compared with the original carbon fiber, the surface of modified fibers became rougher. The amount of oxygen-containing functional groups was increased and the nitrogen element was detected after irradiation grafting. The interlaminar shear strength (ILSS) of composites reinforced by carbon fibers irradiated in diethanolamine solution was increased and then decreased as the irradiation dose increased. The ILSS of CF/epoxy composites was enhanced by 16.1% at 200kGy dose, compared with that of untreated one. The γ-ray irradiation grafting is expected to be a promising method for the industrialized modification of carbon fibers.


2008 ◽  
Vol 16 (3) ◽  
pp. 165-179 ◽  
Author(s):  
Srikanth Goruganthu ◽  
Jason Elwell ◽  
Arun Ramasetty ◽  
Abilash R. Nair ◽  
Samit Roy ◽  
...  

2020 ◽  
Vol 54 (20) ◽  
pp. 2761-2779 ◽  
Author(s):  
Hasan Ulus ◽  
Halil Burak Kaybal ◽  
Volkan Eskizeybek ◽  
Ahmet Avcı

Seawater aging-dominated delamination failure is a critical design parameter for marine composites. Modification of matrix with nanosized reinforcements of fiber-reinforced polymer composites comes forward as an effective way to improve the delamination resistance of marine composites. In this study, we aimed to investigate experimentally the effect of halloysite nanotube nanoreinforcements on the fracture performance of artificial seawater aged basalt–epoxy composites. For this, we introduced various amounts of halloysite nanotubes into the epoxy and the halloysite nanotube–epoxy mixtures were used to impregnate to basalt fabrics via vacuum-assisted resin transfer molding, subsequently. Fracture performances of the halloysite nanotubes modified epoxy and basalt/epoxy composite laminated were evaluated separately. Single edge notched tensile tests were conducted on halloysite nanotube modified epoxy nanocomposites and the average stress intensity factor (KIC) was increased from 1.65 to 2.36 MPa.m1/2 (by 43%) with the incorporation of 2 wt % halloysite nanotubes. The interlaminar shear strength and Mode-I interlaminar fracture toughness (GIC) of basalt–epoxy hybrid composites were enhanced from 36.1 to 42.9 MPa and from 1.22 to 1.44 kJ/m2, respectively. Moreover, the hybrid composites exhibited improved seawater aging performance by almost 52% and 34% in interlaminar shear strength and GIC values compared to the neat basalt-epoxy composites after conditioning in seawater for six months, respectively. We proposed a model to represent fracture behavior of the seawater aged hybrid composite based on scanning electron microscopy and infrared spectroscopy analyses.


Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 778 ◽  
Author(s):  
Elwathig. Hassan ◽  
Tienah. Elagib ◽  
Hafeezullah Memon ◽  
Muhuo Yu ◽  
Shu Zhu

Due to the non-polar nature and low wettability of carbon fibers (CFs), the interfacial adhesion between CFs and the polyetheretherketone (PEEK) matrix is poor, and this has negative effects on the mechanical properties of CF/PEEK composites. In this work, we established a modification method to improve the interface between CFs and PEEK based chemical grafting of aminated polyetheretherketone (PEEK-NH2) on CFs to create an interfacial layer which has competency with the PEEK matrix. The changed chemical composition, surface morphology, surface energy, and interlaminar shear strength were investigated. After grafting, the interlaminar shear strength (ILSS) was improved by 33.4% due to the covalent bonds in the interface region, as well as having good compatibility between the interface modifier and PEEK. Finally, Dynamic Mechanical Analysis (DMA) and Scanning Electron Microscopy (SEM) observation also confirmed that the properties of the modified CF/PEEK composites interface were enhanced. This work is, therefore, a beneficial approach towards enhancing the mechanical properties of thermoplastic composites by controlling the interface between CFs and the PEEK matrix.


2016 ◽  
Vol 848 ◽  
pp. 189-195
Author(s):  
Nan Nan Ni ◽  
Yue Fang Wen ◽  
De Long He ◽  
Miao Cai Guo ◽  
Xiao Su Yi

A new kind of structural damping composites was prepared by interleaving polyamide nonwoven fabrics (PNF) between the carbon fiber reinforced epoxy composite laminates. The damping behaviors of the composites made were experimentally investigated using cantilever beam test and dynamic mechanical analysis. The damping ratios of the nonwoven fabrics interleaved composites were compared with the ones of non-interleaved composites. In addition, the interlaminar shear strength and flexible modulus of the composites were also investigated, as well as the composite compression after impact (CAI), Mode I and Mode II interlaminar fracture toughness (GIC and GIIC), in order to evaluate the influence of the polyamide nonwoven fabric layers on the composite mechanical properties. It has been observed that the interleaved polyamide nonwoven fabric layers greatly improved the composite damping loss factors, and the composites containing 7 layers of PNF showed the best damping behavior. Meanwhile, the addition of PNF showed a negligible influence on the composite flexible strength and modulus and interlaminar shear strength. Most importantly, the CAI, GIC and GIIC tests indicated that the composite interlaminar toughness and impact resistance were significantly improved by the interleaved PNF. Finally, the reinforcing mechanism of this kind of composites is discussed.


2011 ◽  
Vol 179-180 ◽  
pp. 449-454
Author(s):  
Dong Bing Geng ◽  
Hong Jun Guo ◽  
San Qing Zhang

In this paper, a new method that has shown significant potential to characterize lightning strikes damage which is couple with dynamic mechanical analysis. The composite samples used in this work are based on carbon fiber/bismaleimide system. The analysis of the dynamic mechanical data demonstrate the glass transition temperature of the composites increased as a function of increasing lightning current , simultaneity with the presence ofpotential damage, whichare result in higher network cross-link density and the incipent degradation of the polymer matrix.


Sign in / Sign up

Export Citation Format

Share Document