Impact and Suitability of Reactive Routing Protocols, Energy-Efficient and AI Techniques on QoS Parameters of WANETs

2021 ◽  
pp. 105-117
Author(s):  
Meena Rao ◽  
Richa Gupta

Currently, Mobile Ad-hoc networks (MANET) are consider as an important portion of the wireless networks and for the communication in MANET, routing mechanism is also play a vital role. MANET routing protocol generates a different performance when it is implemented in a different network scenario. It is a challenge to find the suitable characteristic of MANET routing protocol which conforms to a certain network condition scenario. In the last ten years, many research have been done by the research to analyze the performance of MANET routing protocol but still lots of problems are faces. However, those research are related to the scope of routing protocol based MANET scenario. Basically, there two types of routing mechanism that is known as the Proactive and the Reactive routing protocol. Alternatively, there is a routing protocol which is a combination of both proactive as well as reactive, namely the Hybrid routing protocol. Hybrid routing protocols especially capable to solve the MANET energy consumption by constructing a zone routing protocol (ZRP) and it is superior to over proactive and reactive routing protocols. So, in this research, we proposed an optimized Artificial Neural Network (ANN) based Improved Energy Efficient ZRP (IEE-ZRP) mechanism for MANET with the help of the Grasshopper Optimization Algorithm (GOA). The total MANET simulation area is divided into different zones or clusters or regions to create a secure and energy efficient routing mechanism. The IEE-ZRP mechanism perform better as compare to others routing protocols that clearly mentioned in the results analysis section based on the Quality of Service (QoS) parameters such as Throughput, Packet Delivery Ratio (PDR), Packet Drop Ratio, Delay, Energy Consumption and Control Overhead.


Author(s):  
Yugashree Bhadane ◽  
Pooja Kadam

Now days, wireless technology is one of the center of attention for users and researchers. Wireless network is a network having large number of sensor nodes and hence called as “Wireless Sensor Network (WSN)”. WSN monitors and senses the environment of targeted area. The sensor nodes in WSN transmit data to the base station depending on the application. These sensor nodes communicate with each other and routing is selected on the basis of routing protocols which are application specific. Based on network structure, routing protocols in WSN can be divided into two categories: flat routing, hierarchical or cluster based routing, location based routing. Out of these, hierarchical or cluster based routing is becoming an active branch of routing technology in WSN. To allow base station to receive unaltered or original data, routing protocol should be energy-efficient and secure. To fulfill this, Hierarchical or Cluster base routing protocol for WSN is the most energy-efficient among other routing protocols. Hence, in this paper, we present a survey on different hierarchical clustered routing techniques for WSN. We also present the key management schemes to provide security in WSN. Further we study and compare secure hierarchical routing protocols based on various criteria.


Author(s):  
A. Radhika ◽  
D. Haritha

Wireless Sensor Networks, have witnessed significant amount of improvement in research across various areas like Routing, Security, Localization, Deployment and above all Energy Efficiency. Congestion is a problem of  importance in resource constrained Wireless Sensor Networks, especially for large networks, where the traffic loads exceed the available capacity of the resources . Sensor nodes are prone to failure and the misbehaviour of these faulty nodes creates further congestion. The resulting effect is a degradation in network performance, additional computation and increased energy consumption, which in turn decreases network lifetime. Hence, the data packet routing algorithm should consider congestion as one of the parameters, in addition to the role of the faulty nodes and not merely energy efficient protocols .Nowadays, the main central point of attraction is the concept of Swarm Intelligence based techniques integration in WSN.  Swarm Intelligence based Computational Swarm Intelligence Techniques have improvised WSN in terms of efficiency, Performance, robustness and scalability. The main objective of this research paper is to propose congestion aware , energy efficient, routing approach that utilizes Ant Colony Optimization, in which faulty nodes are isolated by means of the concept of trust further we compare the performance of various existing routing protocols like AODV, DSDV and DSR routing protocols, ACO Based Routing Protocol  with Trust Based Congestion aware ACO Based Routing in terms of End to End Delay, Packet Delivery Rate, Routing Overhead, Throughput and Energy Efficiency. Simulation based results and data analysis shows that overall TBC-ACO is 150% more efficient in terms of overall performance as compared to other existing routing protocols for Wireless Sensor Networks.


2014 ◽  
Vol 3 (1) ◽  
pp. 17-21
Author(s):  
Awantika . ◽  
◽  
Ashok Kumar ◽  
Hardwari Lal Mandoria ◽  
◽  
...  

Author(s):  
Premkumar Chithaluru ◽  
Rajeev Tiwari ◽  
Kamal Kumar

Background: Energy Efficient wireless routing has been an area of research particularly to mitigate challenges surrounding performance in category of Wireless Networks. Objectives: The Opportunistic Routing (OR) technique was explored in recent times and exhibits benefits over many existing protocols and can significantly reduce energy consumption during data communication with very limited compromise on performance. Methods : Using broadcasting nature of the wireless medium, OR practices to discourse two foremost issues of variable link quality and unpredictable node agility in constrained WSNs. OR has a potential to reduce delay in order to increase the consistency of data delivery in network. Results : Various OR based routing protocols have shown varying performances. In this paper, a detailed conceptual and experimental analysis is carried out on different protocols that uses OR technique for providing more clear and definitive view on performance parameters like Message Success Rate, Packet Delivery Ratio and Energy Consumption.


2020 ◽  
Vol 13 (2) ◽  
pp. 168-172
Author(s):  
Ravi Kumar Poluru ◽  
M. Praveen Kumar Reddy ◽  
Syed Muzamil Basha ◽  
Rizwan Patan ◽  
Suresh Kallam

Background:Recently Wireless Sensor Network (WSN) is a composed of a full number of arbitrarily dispensed energy-constrained sensor nodes. The sensor nodes help in sensing the data and then it will transmit it to sink. The Base station will produce a significant amount of energy while accessing the sensing data and transmitting data. High energy is required to move towards base station when sensing and transmitting data. WSN possesses significant challenges like saving energy and extending network lifetime. In WSN the most research goals in routing protocols such as robustness, energy efficiency, high reliability, network lifetime, fault tolerance, deployment of nodes and latency. Most of the routing protocols are based upon clustering has been proposed using heterogeneity. For optimizing energy consumption in WSN, a vital technique referred to as clustering.Methods:To improve the lifetime of network and stability we have proposed an Enhanced Adaptive Distributed Energy-Efficient Clustering (EADEEC).Results:In simulation results describes the protocol performs better regarding network lifetime and packet delivery capacity compared to EEDEC and DEEC algorithm. Stability period and network lifetime are improved in EADEEC compare to DEEC and EDEEC.Conclusion:The EADEEC is overall Lifetime of a cluster is improved to perform the network operation: Data transfer, Node Lifetime and stability period of the cluster. EADEEC protocol evidently tells that it improved the throughput, extended the lifetime of network, longevity, and stability compared with DEEC and EDEEC.


Sign in / Sign up

Export Citation Format

Share Document