reactive routing
Recently Published Documents


TOTAL DOCUMENTS

306
(FIVE YEARS 48)

H-INDEX

16
(FIVE YEARS 2)

Author(s):  
Arudra Annepu ◽  
◽  
Priti Mishra ◽  

Wireless network technically, refers to the category of network in which communication is carried out without using wires. In modern era wireless network has great importance because the communication is taking place with the use of radio waves. Thus, the use of ad-hoc network starts yielding a great importance in variety of applications. The certain research work is carried out in this particular field. MANET is a constructed from various mobility in the form of mobile nodes and anytime without any need of fixed infrastructure. MANET can be made on fly due to lack of fixed infrastructure. MANET is numerous threats types of attacks due to dynamic changing topologies and wireless medium. Security of the MANET becomes one of the challenging tasks. Black hole attacks is the main type of attack that are possible in MANET. Black hole node not forward any data packets to the neighbour node instead it drops all the data packets. Black hole attacks are bit hard to detect due to lack of centralized access. This research work concentrates to enhance the security of MANET by identifying and blocking black hole assaults from occurring. A reactive routing system such as Ad-Hoc on Demand Distance Vector has previously been used to address security problems in the MANET (AODV). Various attack types were investigated, and the consequences of these assaults were detailed by describing how MANET performance was disrupted. Network Simulator 3 (NS3) is used for the simulation process.


Author(s):  
Abdeldime Mohamed ◽  
Tagreed Yahya ◽  
Chen Peng

Vehicular Adhoc Network (VANET), is an emerging technology that holds the opportunity to create potential applications that directly impact peoples' lives, traffic management, and infotainment services. Understanding VANET applications and the available routing protocols can help to infer the most suitable protocols that satisfy VANET application requirements. This paper develops a systematic classification methodology to classify VANET applications from a routing perspective, each application class has different network requirements which are laid down by VANET Projects conducted in different countries. Some of these requirements are related to the routing aspects and need to be satisfied by the selected routing strategies (proactive and reactive). The paper identifies routing strategies performance metrics related to each application class requirement, to efficiently guide the development of these routing strategies towards guaranteeing satisfactory performance for the applications under a wide variety of realistic VANET scenarios. It is also worth mentioning that minimum delay is a requirement needed by time and event-driven application classes. However, high reliability is a requirement needed by on-demand applications. The paper aims to provide a comparative study on the performance of routing strategies in different VANET application classes, to identify which routing strategies have better performance in specific VANET applications class. End-to-end delay is employed as a performance metric to evaluate the short delay requirement, while, the Routing Overhead (RO) is used to assess the reliability requirement. Simulation results showed that proactive routing protocol has a lower delay, which means that it is suitable for delay-sensitive applications such as time-driven and event-driven applications. The result also showed that the reactive routing protocol outperforms the proactive routing protocol in terms of RO, which means that reactive routing protocols can be nominated as proper routing strategies to satisfy the reliability requirement of the On-demand driven applications.


Author(s):  
ISTIKMAL ISTIKMAL ◽  
SUGONDO HADIYOSO ◽  
INDRARINI DYAH IRAWATI ◽  
ARIF INDRA IRAWAN

2021 ◽  
pp. 102578
Author(s):  
Sebastian L. Sampayo ◽  
Julien Montavont ◽  
Thomas Noël

Sign in / Sign up

Export Citation Format

Share Document