Potential Application of Indigenous Microorganism Derived Biosorbent in the Efficient Removal of Congo Red from Aqueous Solution

2021 ◽  
Vol 9 (2) ◽  
pp. 54-64
Author(s):  
Lalmalsawm dawngliani ◽  
◽  
Gospel Lallawmzuali ◽  
Samuel Lallianrawna ◽  
Thanhming liana ◽  
...  

IMO compost was obtained using Indigenous Microorganisms (IMO) as inoculant through anaerobic fermentation process from kitchen waste biomass. The Physico-chemical analysis of the solid was obtained by taking pH, MC, OM, OC, N, K and P content. The biosorbent material was further characterized by SEM, IR and BET analytical techniques. Various physico-chemical parametric studies viz. effect of pH, initial dye concentration and background electrolyte concentrations are performed in the removal of Congo red (CR) dye using the IMO compost. The lower pH condition pH < 6.0 favoured the removal of Congo red and the percent removal was decreased with increase in the CR concentration. The removal of Congo red followed the pseudo-second order rate kinetics and the equilibrium state sorption data was reasonably fitted well to the Freundlich adsorption isotherm. In addition, the minimal effect of background electrolyte concentrations (0.0001 to 0.1 mol/L NaNO3) in the removal of CR inferred a specific sorption of Congo red forming ‘inner sphere’ complexes at the surface of the biosorbent.

2016 ◽  
Vol 4 (2) ◽  
pp. 105-112
Author(s):  
Lalchhing puii ◽  
◽  
Seung-Mok Lee ◽  
Diwakar Tiwari ◽  
◽  
...  

A mesoporous silica was synthesized by annealing (3-Aminopropyl) triethoxysilane grafted chitosan at 800˚C. The mesoporous silica was characterized by the XRD (X-ray diffraction) analysis. The BET specific surface area and pore size of silica was found to be 178.42 m2/g and 4.13 nm. The mesoporous silica was then employed for the efficient remediation of aqueous solutions contaminated with Cu(II) under batch and column reactor operations. The mesoporous silica showed extremely high per cent removal of Cu(II) at wide pH range i.e., pH ~2.0 to 7.0. Relatively a fast uptake of Cu(II) was occurred and high percentage removal was obtained at initial concentrations studied from 1.0 to 15.0 mg/L. The equilibrium state sorption data were utilized for the Langmuir and Freundlich adsorption isotherm studies. Moreover, the effect of an increase in background electrolyte concentrations from 0.0001 to 0.1 mol/L NaNO3 was assessed for the uptake of Cu(II) by mesoporous silica. The equilibrium sorption was achieved within 240 min of contact and the kinetic data is best fitted to the pseudo-second-order and fractal like pseudo-second-order kinetic models. In addition, the mesoporous silica was used for dynamic studies under column reactor operations. The breakthrough curve was then used for the non-linear fitting of the Thomas equation and the loading capacity of the column for Cu(II) was estimated.


2021 ◽  
Vol 9 (2) ◽  
pp. 161-168
Author(s):  
Ralte Malsawmdawngzela ◽  
◽  
Thanhming liana ◽  
Diwakar Tiwari ◽  
◽  
...  

The aim of this communication is to assess the sorption behavior of silanes grafted bentonite composite materials for Rhodamine B (RhB) from aqueous solution. The nanocomposites were synthesized by functionalization of the bentonite with 3-mercaptopropyltrimethoxysilane and 3-aminopropyltriethoxysilane under inert atmosphere. The batch experimental data indicated that the composite materials showed high percentage removal of RhB over a wide pH range, i.e., pH ~4.0 to 10.0. A high percentage removal of RhB was achieved within the concentrations studied from 1.0 to 25.0 mgL-1. Langmuir and Freundlich adsorption isotherm were obtained using equilibrium state sorption data. The equilibrium sorption was attained within 180 min of contact and the kinetic model best fitted the pseudo-second-order model. Further, the change in background electrolyte (NaCl) concentrations from 0.0001 to 0.1molL-1 NaCl and the presence of co-existing ions do not significantly affect the sorption of RhB by the composite sorbents except for EDTA.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1513
Author(s):  
Nour-Eddine Menad ◽  
Nassima Kana ◽  
Alain Seron ◽  
Ndue Kanari

The grown demand of current and future development of new technologies for high added value and strategic metals, such as molybdenum, vanadium, and chromium, and facing to the depletion of basic primary resources of these metals, the metal extraction and recovery from industrial by-products and wastes is a promising choice. Slag from the steelmaking sector contains a significant amount of metals; therefore, it must be considered to be an abundant secondary resource for several strategic materials, especially chromium. In this work, the generated slag from electric arc furnace (EAF) provided by the French steel industry was characterized by using multitude analytical techniques in order to determine the physico-chemical characteristics of the targeted slag. The revealed main crystallized phases are larnite (Ca2SiO4), magnetite (Fe3O4), srebrodolskite (Ca2Fe2O5), wüstite (FeO), maghemite (Fe2.6O3), hematite (Fe2O3), chromite [(Fe,Mg)Cr2O4], and quartz (SiO2). The collected slag sample contains about 34.1% iron (48.5% Fe2O3) and 3.5% chromium, whilst the vanadium contents is around 1500 ppm. The Mössbauer spectroscopy suggested that the non-magnetic fraction represents 42 wt% of the slag, while the remainder (58 wt%) is composed of magnetic components. The thermal treatment of steel slag up to 900 °C indicated that this solid is almost stable and few contained phases change their structures.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 279 ◽  
Author(s):  
Marija Stjepanović ◽  
Natalija Velić ◽  
Antonela Galić ◽  
Indira Kosović ◽  
Tamara Jakovljević ◽  
...  

The aim of the study was to screen the waste wood biomass of 10 wood species as biosorbents for synthetic dye Congo Red (CR) removal from water and to single out the most efficient species for further batch biosorption experiments. Euroamerican poplar (EP), the most efficient species achieving 71.8% CR removal and biosorption capacity of 3.3 mg g−1, was characterized by field emission scanning electron microscopy (FE-SEM) and Fourier transform infrared spectroscopy (FTIR). Different factors affecting the biosorption process were investigated: initial biosorbent concentration (1–10 g dm−3), contact time (5–360 min), initial CR concentration (10–100 mg dm−3), and the initial pH (pH = 4–9). The results showed that CR removal efficiency increased with the increase of biosorbent concentration and contact time. Increase of initial CR concentration led to an increase of the biosorption capacity, but also a decrease of CR removal efficiency. The highest CR removal efficiency was achieved at pH = 4, while at pH = 9 a significant decrease was noticed. The percentage of CR removal from synthetic wastewater was 18.6% higher than from model CR solution. The Langmuir model fitted well the biosorption data, with the maximum biosorption capacity of 8 mg g−1. The kinetics data were found to conform to the pseudo-second-order kinetics model.


Chemosphere ◽  
2022 ◽  
pp. 133617
Author(s):  
Preethi ◽  
Rajesh Banu J ◽  
Sunita Varjani ◽  
Sivashanmugam P ◽  
Vinay Kumar Tyagi ◽  
...  

2018 ◽  
Vol 11 ◽  
pp. 117862211881168 ◽  
Author(s):  
Christine Jeyaseelan ◽  
Nisha Chaudhary ◽  
Ravin Jugade

Dyes are a major cause of concern nowadays as large quantities are being released into water bodies causing pollution. In this article, modified chitosan (sulphate crosslinked) has been studied for the removal of Congo red (a benzidine-based anionic diazo dye) which is a toxic dye introduced into water bodies from textile industries. Sulphate-crosslinked chitosan (SCC) was prepared in the laboratory and the characterization of SCC was done by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). Various parameters such as pH, contact time, adsorbent dosage, and concentration of adsorbent were optimized. The adsorption capacity was determined at pH 3.0, at which the percentage recovery was about 90% and followed Freundlich adsorption isotherm with an adsorption capacity of 91.8 mg/g. The adsorption followed pseudo-second-order kinetics. Various thermodynamic parameters were also determined for the change in adsorption with temperature. The SCC was regenerated with NaOH and showed good recycling capacity. The modified chitosan was applied for the removal of Congo red from industrial wastewater samples (spiked).


1997 ◽  
Vol 92 ◽  
pp. 359-371 ◽  
Author(s):  
E. Photos-Jones ◽  
A. Cottier ◽  
A. J. Hall ◽  
L. G. Mendoni

The island of Kea in the North Cyclades was well known in antiquity for its miltos, a naturally occurring red iron oxide valued for its colour and wide range of applications. By combining geological field work, physico-chemical analytical techniques, simulation (heating) experiments as well as simple laboratory tests, this paper describes the study of Kean iron oxides in an attempt to characterize this material which is still largely elusive in the archaeological record. The present work corroborates previous observations about the superior quality of some Kean iron oxides. Furthermore, it puts forward the hypothesis that miltos may have been considered an industrial mineral, and as such may have been used as an umbrella term for a variety of materials including mineralogically distinct purple as well as red iron oxides.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 54
Author(s):  
Vairavel Parimelazhagan ◽  
Gautham Jeppu ◽  
Nakul Rampal

The adsorption of Congo red (CR), an azo dye, from aqueous solution using free and immobilized agricultural waste biomass of Nelumbo nucifera (lotus) has been studied separately in a continuous fixed-bed column operation. The N. nucifera leaf powder adsorbent was immobilized in various polymeric matrices and the maximum decolorization efficiency (83.64%) of CR occurred using the polymeric matrix sodium silicate. The maximum efficacy (72.87%) of CR dye desorption was obtained using the solvent methanol. Reusability studies of free and immobilized adsorbents for the decolorization of CR dye were carried out separately in three runs in continuous mode. The % color removal and equilibrium dye uptake of the regenerated free and immobilized adsorbents decreased significantly after the first cycle. The decolorization efficiencies of CR dye adsorption were 53.66% and 43.33%; equilibrium dye uptakes were 1.179 mg g–1 and 0.783 mg g–1 in the third run of operation with free and immobilized adsorbent, respectively. The column experimental data fit very well to the Thomas and Yoon–Nelson models for the free and immobilized adsorbent with coefficients of correlation R2 ≥ 0.976 in various runs. The study concludes that free and immobilized N. nucifera can be efficiently used for the removal of CR from synthetic and industrial wastewater in a continuous flow mode. It makes a substantial contribution to the development of new biomass materials for monitoring and remediation of toxic dye-contaminated water resources.


Sign in / Sign up

Export Citation Format

Share Document