scholarly journals Anomalous Cepheids discovered in a sample of galactic short period Type II Cepheids

2018 ◽  
pp. 2-2 ◽  
Author(s):  
M.I. Jurkovic

We revisited the short period Type II Cepheids (T2Cs), called the BL Herculis (BLHs), in the Galactic Field to derive a homogeneous analysis of their Fourier parameters. Only V-band data were compiled to make sure that it was directly comparable between the known variables of the OGLE-III catalogue and the 59 individual objects classified as short period Type II Cepheids in the General Catalogue of Variable Stars (GCVS) we had in our sample. The derived Fourier parameters were used to make distinction between different classes of variables. From the 59 stars we found 19 BLHs, 19 fundamental mode Anomalous Cepheids (ACs) (8 of them were already known from the Catalina Sky Survey (CSS)), 1 first overtone AC, 2 were found to be possible peculiar W Virginis (pWVir), 11 classical Cepheids (DCEPs), and 7 stars were not pulsating variables at all. As a result we created a list of bright BLH stars in the Galactic Field, and separated the ACs, as well as other objects that were misclassified. The number of true BLHs decreased in our sample by more than 50%. We gathered the metallicity from spectroscopic measurements published in literature. While the number of actual measurements is low, it is highly suggestive that ACs are metal poor. The mean metallicity from 8 measurements in 4 stars (UY Eri having 5 different [Fe/H] data points) is -1.12 dex, but if the higher value metallicity outliers of UY Eri are left out the mean metallicity becomes -1.88 dex, regardless if the AC is in the Milky Way itself or in a cluster. On the other hand, BLHs seem to have a Solar-like metallicity of 0.00 dex averaged from 21 measurements of 10 stars.

2021 ◽  
Vol 502 (1) ◽  
pp. 1299-1311
Author(s):  
Heidi B Thiemann ◽  
Andrew J Norton ◽  
Hugh J Dickinson ◽  
Adam McMaster ◽  
Ulrich C Kolb

ABSTRACT We present the first analysis of results from the SuperWASP variable stars Zooniverse project, which is aiming to classify 1.6 million phase-folded light curves of candidate stellar variables observed by the SuperWASP all sky survey with periods detected in the SuperWASP periodicity catalogue. The resultant data set currently contains >1 million classifications corresponding to >500 000 object–period combinations, provided by citizen–scientist volunteers. Volunteer-classified light curves have ∼89 per cent accuracy for detached and semidetached eclipsing binaries, but only ∼9 per cent accuracy for rotationally modulated variables, based on known objects. We demonstrate that this Zooniverse project will be valuable for both population studies of individual variable types and the identification of stellar variables for follow-up. We present preliminary findings on various unique and extreme variables in this analysis, including long-period contact binaries and binaries near the short-period cut-off, and we identify 301 previously unknown binaries and pulsators. We are now in the process of developing a web portal to enable other researchers to access the outputs of the SuperWASP variable stars project.


2020 ◽  
Vol 492 (3) ◽  
pp. 3602-3621 ◽  
Author(s):  
Y C Joshi ◽  
J Maurya ◽  
A A John ◽  
A Panchal ◽  
S Joshi ◽  
...  

ABSTRACT We present a comprehensive photometric analysis of a young open cluster NGC 1960 (= M36) along with the long-term variability study of this cluster. Based on the kinematic data of Gaia DR2, the membership probabilities of 3871 stars are ascertained in the cluster field among which 262 stars are found to be cluster members. Considering the kinematic and trigonometric measurements of the cluster members, we estimate a mean cluster parallax of 0.86 ± 0.05 mas and mean proper motions of μRA = −0.143 ± 0.008 mas yr−1 and μDec. = −3.395 ± 0.008 mas yr−1. We obtain basic parameters of the cluster such as E(B − V) = 0.24 ± 0.02 mag, log(Age/yr) = 7.44 ± 0.02, and d = 1.17 ± 0.06 kpc. The mass function slope in the cluster for the stars in the mass range of 0.72–7.32 M⊙ is found to be γ = −1.26 ± 0.19. We find that mass segregation is still taking place in the cluster which is yet to be dynamically relaxed. This work also presents first high-precision variability survey in the central 13 arcmin × 13 arcmin region of the cluster. The V-band photometric data accumulated on 43 nights over a period of more than 3 yr reveals 76 variable stars among which 72 are periodic variables. Among them, 59 are short period (P < 1 d) and 13 are long period (P > 1 d). The variable stars have V magnitudes ranging between 9.1 to 19.4 mag and periods between 41 min and 10.74 d. On the basis of their locations in the H–R diagram, periods, and characteristic light curves, 20 periodic variables belong to the cluster are classified as 2 δ-Scuti, 3 γ-Dor, 2 slowly pulsating B stars, 5 rotational variables, 2 non-pulsating B stars, and 6 as miscellaneous variables.


2013 ◽  
Vol 9 (S301) ◽  
pp. 431-432
Author(s):  
Monika Jurković ◽  
László Szabados

AbstractBL Her type pulsating variable stars are a subtype of Type II Cepheids, pulsating with periods in the range from 1 to 4 days. The General Catalog of Variable Stars lists 71 objects. For each star from this list, we searched for data in the publicly available photometric databases: AAVSO, ASAS, Catalina Sky Survey, INTEGRAL OMC, LINEAR, NSVS, SuperWASP. The analysis was done separately for each dataset. Here we present first results.


2019 ◽  
Vol 623 ◽  
pp. A116 ◽  
Author(s):  
Pierre Kervella ◽  
Alexandre Gallenne ◽  
Nancy Remage Evans ◽  
Laszlo Szabados ◽  
Frédéric Arenou ◽  
...  

Context. Classical Cepheids (CCs) and RR Lyrae stars (RRLs) are important classes of variable stars used as standard candles to estimate galactic and extragalactic distances. Their multiplicity is imperfectly known, particularly for RRLs. Astoundingly, to date only one RRL has convincingly been demonstrated to be a binary, TU UMa, out of tens of thousands of known RRLs. Aims. Our aim is to detect the binary and multiple stars present in a sample of Milky Way CCs and RRLs. Methods. In the present article, we combine the HIPPARCOS and Gaia DR2 positions to determine the mean proper motion of the targets, and we search for proper motion anomalies (PMa) caused by close-in orbiting companions. Results. We identify 57 CC binaries from PMa out of 254 tested stars and 75 additional candidates, confirming the high binary fraction of these massive stars. For 28 binary CCs, we determine the companion mass by combining their spectroscopic orbital parameters and astrometric PMa. We detect 13 RRLs showing a significant PMa out of 198 tested stars, and 61 additional candidates. Conclusions. We determine that the binary fraction of CCs is likely above 80%, while that of RRLs is at least 7%. The newly detected systems will be useful to improve our understanding of their evolutionary states. The discovery of a significant number of RRLs in binary systems also resolves the long-standing mystery of their extremely low apparent binary fraction.


2020 ◽  
Vol 499 (1) ◽  
pp. 618-630
Author(s):  
Y C Joshi ◽  
Ancy A John ◽  
J Maurya ◽  
A Panchal ◽  
Brijesh Kumar ◽  
...  

ABSTRACT This work presents the first long-term photometric variability survey of the intermediate-age open cluster NGC 559. Time series V-band photometric observations on 40 nights taken over more than 3 yr with three different telescopes are analysed to search for variable stars in the cluster. We investigate the data for the periodicity analysis and reveal 70 variable stars including 67 periodic variables in the target field, all of them are newly discovered. The membership analysis of the periodic variables reveals that 30 of them belong to the cluster and remaining 37 are identified as field variables. Out of the 67 periodic variables, 48 are short-period (P < 1 d) variables and 19 are long-period (P > 1 d) variables. The variable stars have periodicity between 3 h to 41 d and their brightness ranges from V  = 10.9 to 19.3 mag. The periodic variables belonging to the cluster are then classified into different variability types on the basis of observational properties such as shape of the light curves, periods, amplitudes, as well as their positions in the Hertzsprung–Russell (H–R) diagram. As a result, we identify 1 Algol type eclipsing binary, 1 possible blue straggler star, 3 slowly pulsating B type stars, 5 rotational variables, 11 non-pulsating variables, 2 FKCOM variables, and remaining 7 are characterized as miscellaneous variables. We also identify three eclipsing binary stars (EBs) belonging to the field star population. The phoebe package is used to analyse the light curve of all four EBs in order to determine the parameters of the binary systems such as masses, temperatures, and radii.


2020 ◽  
Vol 644 ◽  
pp. A96
Author(s):  
G. Bono ◽  
V. F. Braga ◽  
G. Fiorentino ◽  
M. Salaris ◽  
A. Pietrinferni ◽  
...  

We discuss the observed pulsation properties of Type II Cepheids (TIICs) in the Galaxy and in the Magellanic Clouds. We found that period (P) distributions, luminosity amplitudes, and population ratios of the three different sub-groups (BL Herculis [BLH, P < 5 days], W Virginis [WV, 5 ≤ P < 20 days], RV Tauri [RVT, P > 20 days]) are quite similar in different stellar systems, suggesting a common evolutionary channel and a mild dependence on both metallicity and environment. We present a homogeneous theoretical framework based on horizontal branch (HB) evolutionary models, showing that TIICs are mainly old (t ≥ 10 Gyr) low-mass stars. The BLH stars (BLHs) are predicted to be post-early asymptotic giant branch (PEAGB) stars (double shell burning) on the verge of reaching their AGB track (first crossing of the instability strip), while WV stars (WVs) are a mix of PEAGB and post-AGB stars (hydrogen shell burning) moving from the cool to the hot side (second crossing) of the Hertzsprung-Russell Diagram. This suggests that they are a single group of variable stars. The RVT stars (RVTs) are predicted to be a mix of post-AGB stars along their second crossing (short-period tail) and thermally pulsing AGB stars (long-period tail) evolving towards their white dwarf cooling sequence. We also present several sets of synthetic HB models by assuming a bi-modal mass distribution along the HB. Theory suggests, in agreement with observations, that TIIC pulsation properties marginally depend on metallicity. Predicted period distributions and population ratios for BLHs agree quite well with observations, while those for WVs and RVTs are almost a factor of two smaller and higher than observed, respectively. Moreover, the predicted period distributions for WVs peak at periods shorter than observed, while those for RVTs display a long-period tail not supported by observations. We investigate several avenues to explain these differences, but more detailed calculations are required to address these discrepancies.


2020 ◽  
Vol 644 ◽  
pp. A95 ◽  
Author(s):  
V. F. Braga ◽  
G. Bono ◽  
G. Fiorentino ◽  
P. B. Stetson ◽  
M. Dall’Ora ◽  
...  

The separation between RR Lyrae (RRLs) and type II Cepheid (T2Cs) variables based on their period is debated. Both types of variable stars are distance indicators, and we aim to promote the use of T2Cs as distance indicators in synergy with RRLs. We adopted new and existing optical and near-infrared (NIR) photometry of ω Cen to investigate several diagnostics (color-magnitude diagram, Bailey diagram, Fourier decomposition of the light curve, and amplitude ratios) for their empirical separation. We found that the classical period threshold at one day is not universal and does not dictate the evolutionary stage: V92 has a period of 1.3 days but is likely to be still in its core helium-burning phase, which is typical of RRLs. We also derived NIR period-luminosity relations and found a distance modulus of 13.65 ± 0.07 (err.) ± 0.01 (σ) mag, in agreement with the recent literature. We also found that RRLs and T2Cs obey the same period-luminosity relations in the NIR. This equivalence provides the opportunity of adopting RRLs+T2Cs as an alternative to classical Cepheids to calibrate the extragalactic distance scale.


2019 ◽  
Vol 491 (1) ◽  
pp. 13-28 ◽  
Author(s):  
T Jayasinghe ◽  
K Z Stanek ◽  
C S Kochanek ◽  
B J Shappee ◽  
T W-S Holoien ◽  
...  

ABSTRACT The All-Sky Automated Survey for Supernovae (ASAS-SN) provides long baseline (∼4 yr) light curves for sources brighter than V ≲ 17 mag across the whole sky. As part of our effort to characterize the variability of all the stellar sources visible in ASAS-SN, we have produced ∼30.1 million V-band light curves for sources in the Southern hemisphere using the APASS DR9 (AAVSO Photometric All-Sky Survey Data Release) catalogue as our input source list. We have systematically searched these sources for variability using a pipeline based on random forest classifiers. We have identified ${\sim } 220\, 000$ variables, including ${\sim } 88\, 300$ new discoveries. In particular, we have discovered ${\sim }48\, 000$ red pulsating variables, ${\sim }23\, 000$ eclipsing binaries, ∼2200 δ-Scuti variables, and ${\sim }10\, 200$ rotational variables. The light curves and characteristics of the variables are all available through the ASAS-SN variable stars data base (https://asas-sn.osu.edu/variables). The pre-computed ASAS-SN V-band light curves for all the ∼30.1 million sources are available through the ASAS-SN photometry data base (https://asas-sn.osu.edu/photometry). This effort will be extended to provide ASAS-SN light curves for sources in the Northern hemisphere and for V ≲ 17 mag sources across the whole sky that are not included in APASS DR9.


2019 ◽  
Vol 625 ◽  
pp. A151 ◽  
Author(s):  
V. F. Braga ◽  
R. Contreras Ramos ◽  
D. Minniti ◽  
C. E. Ferreira Lopes ◽  
M. Catelan ◽  
...  

Context. The Galactic center (GC) is the densest region of the Milky Way. Variability surveys towards the GC potentially provide the largest number of variable stars per square degree within the Galaxy. However, high stellar density is also a drawback due to blending. Moreover, the GC is affected by extreme reddening, therefore near infrared observations are needed. Aims. We plan to detect new variable stars towards the GC, focusing on type II Cepheids (T2Cs) which have the advantage of being brighter than RR Lyrae stars. Methods. We perform parallel Lomb-Scargle and Generalized Lomb-Scargle periodogram analysis of the Ks-band time series of the VISTA variables in the Vía Láctea survey, to detect periodicities. We employ statistical parameters to clean our sample. We take account of periods, light amplitudes, distances, and proper motions to provide a classification of the candidate variables. Results. We detected 1019 periodic variable stars, of which 164 are T2Cs, 210 are Miras and 3 are classical Cepheids. We also found the first anomalous Cepheid in this region. We compare their photometric properties with overlapping catalogs and discuss their properties on the color-magnitude and Bailey diagrams. Conclusions. We present the most extensive catalog of T2Cs in the GC region to date. Offsets in E(J − Ks) and in the reddening law cause very large (∼1–2 kpc) uncertainties on distances in this region. We provide a catalog which will be the starting point for future spectroscopic surveys in the innermost regions of the Galaxy.


1974 ◽  
Vol 22 ◽  
pp. 193-203
Author(s):  
L̆ubor Kresák

AbstractStructural effects of the resonance with the mean motion of Jupiter on the system of short-period comets are discussed. The distribution of mean motions, determined from sets of consecutive perihelion passages of all known periodic comets, reveals a number of gaps associated with low-order resonance; most pronounced are those corresponding to the simplest commensurabilities of 5/2, 2/1, 5/3, 3/2, 1/1 and 1/2. The formation of the gaps is explained by a compound effect of five possible types of behaviour of the comets set into an approximate resonance, ranging from quick passages through the gap to temporary librations avoiding closer approaches to Jupiter. In addition to the comets of almost asteroidal appearance, librating with small amplitudes around the lower resonance ratios (Marsden, 1970b), there is an interesting group of faint diffuse comets librating in characteristic periods of about 200 years, with large amplitudes of about±8% in μ and almost±180° in σ, around the 2/1 resonance gap. This transient type of motion appears to be nearly as frequent as a circulating motion with period of revolution of less than one half that of Jupiter. The temporary members of this group are characteristic not only by their appearance but also by rather peculiar discovery conditions.


Sign in / Sign up

Export Citation Format

Share Document