scholarly journals OPTIMASI MEDIA PRODUKSI ENZIM XILANASE DARI Bacillus sp. (Medium Optimization of Xylanase Production from Bacillus sp.)

2016 ◽  
Vol 6 (01) ◽  
Author(s):  
Erika Erika ◽  
Rochmah Agustrina ◽  
Sumardi Sumardi ◽  
Mulyono Mulyono

Xylan is a carbon source in growth medium of extracellular xylanase producing bacteria. The purpose of this study was to get the optimum medium for the growth of Bacillus sp. in producing the xylanase. The factors consist of production time, carbon, and nitrogen source, as well as simple sugars. Addition carbon source used was delignified sugarcane bagasse, rice hulls, and corn cobs with different concentrations (0.25%; 0.5%; 0.75%; and 1% w/v) . Ammonium chloride, ammonium sulfate, and sodium nitrate with different concentrations (0.08%; 0.17%; 0.26%; and 0.35% w/v) were used as a source of nitrogen, while the simple sugar used was glucose, lactose, sucrose, and xylose. The results showed that the optimum culture media of Bacillus sp. to produce xylanase is media with 0.25% natural starch from the corn cob xylan as a carbon source, 0.26% ammonium chloride as a source of nitrogen, 0.0625 grams of sugar xylose, at pH 6, incubation temperature of 40°C, and 12 hours production time. In that media, xylanase activity was 0.2 U/mL.Keywords: agricultural waste, medium optimization, xylanase, Bacillus sp.   ABSTRAKXilan merupakan sumber karbon pada media pertumbuhan bakteri penghasil enzim ekstraseluler xilanase. Tujuan penelitian ini adalah mendapatkan media optimum untuk pertumbuhan Bacillus sp. dalam memproduksi xilanase. Perlakuan percobaan terdiri dari waktu produksi, sumber karbon, sumber nitrogen, dan penambahan gula sederhana. Sumber karbon yang digunakan adalah bagas tebu, sekam padi, dan tongkol jagung dengan variasi konsentrasi 0,25%; 0,5%; 0,75%; dan 1% (b/v) . Amonium klorida, amonium sulfat, dan natrium nitrat dengan variasi konsentrasi 0,08%; 0,17%; 0,26%; dan 0,35% (b/v) digunakan sebagai sumber nitrogen, sedangkan gula sederhana yang digunakan adalah glukosa, laktosa, sukrosa, dan xilosa masing-masing sebanyak 0,0625 b/v. Hasil percobaan menunjukkan bahwa media optimum pertumbuhan Bacillus sp. untuk produksi xilanase adalah media dengan 0,25% tepung xilan dari tongkol jagung sebagai sumber karbon, 0,26% amonium klorida sebagai sumber nitrogen, 0,0625 gram gula xilosa, pada pH media 6, suhu inkubasi 40°C, serta waktu produksi 12 jam. Dalam media tersebut, aktivitas xilanase yang dihasilkan sebesar 0,2 U/mL.Kata kunci : limbah pertanian, optimasi media, xilanase, Bacillus sp. 

Author(s):  
D. T. Ha ◽  
A. V. Kanarskiy ◽  
Z. A. Kanarskaya ◽  
A. V. Scherbakov ◽  
E. N. Scherbakova ◽  
...  

Xylanase is an enzyme that hydrolyses β-1,4 bonds in plant xylan. This enzyme is applied in the bioconversion of agro-industrial waste for xylooligosaccharide hydrolysate production to improve digestibility and nutrition value of animal feed, food processing, the utilisation and faster decomposition of crop debris in soil, as well as in cellulose bleaching and other industries. The current trend focuses on using renewable resources, such as agricultural waste, as substitutes for expensive purified xylan in producer screening and xylanase synthesis. This work aimed to determine the impact of Paenibacillus mucilaginosus cultivation conditions on the xylanase production yield. Rice bran ferment lysate along with birch and beech timber xylans were used as a carbon source. Temperature, medium pH, pH correction factors, inoculant incubation time, carbon and nitrogen sources and concentrations were the studied criteria of xylanase biosynthesis and growth in bacteria P. ucilaginosus strain 560. We show that the xylanase biosynthesis and cultivation in P. mucilaginosus strain 560 are more practical and cost-effective with the use of a rice bran ferment lysate-based nutrient medium. Inductors contained in the rice bran ferment lysate improve the xylanase biosynthesis. Calcium ions also facilitate biosynthesis in the studied strain. Cultivation recommendations are: carbon source concentration in medium 0.5% of total reducing substances content; 0.2% carbamide as optimal nitrogen source; calcium hydroxide as an agent for medium pH correction to 6.0±0.2; cultivation temperature 30±1 °С. Under the specified conditions, cultivation of P. mucilaginosus does not require inoculate preprocessing, and a maximal xylanase activity in stationary culture reaches 20 U/mL.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Guo-Qiang Guan ◽  
Peng-Xiang Zhao ◽  
Jin Zhao ◽  
Mei-Juan Wang ◽  
Shu-Hao Huo ◽  
...  

A new fungusCladosporium oxysporumGQ-3 producing extracellular xylanase was isolated from decaying agricultural waste and identified based on the morphology and comparison of internal transcribed spacer (ITS) rDNA gene sequence.C. oxysporumproduced maximum xylanase activity of 55.92 U/mL with wheat bran as a substrate and NH4Cl as a nitrogen source. Mg2+improvedC. oxysporumxylanase production.Partially purified xylanase exhibited maximum activity at 50°C and pH 8.0, respectively, and showed the stable activity after 2-h treatment in pH 7.0–8.5 or below 55°C. Mg2+enhanced the xylanase activity by 2% while Cu2+had the highest inhibition ratio of 57.9%. Furthermore,C. oxysporumxylanase was resistant to most of tested neutral and alkaline proteases. Our findings indicated thatCladosporium oxysporumGQ-3 was a novel xylanase producer, which could be used in the textile processes or paper/feed industries.


2012 ◽  
Vol 19 ◽  
pp. 7-14
Author(s):  
SCD Sharma ◽  
MS Shovon ◽  
AKM Asaduzzaman ◽  
MG Sarowar Jahan ◽  
T Yeasmin ◽  
...  

Context: To analyze the nutritional and physicochemical parameters for the production of alkali-thermostable and cellulase free xylanase from bacteria. Objectives: The aim of this study was to isolation and identification and of alkali-thermostable and cellulase free xylanase producing bacteria from soil as well as optimization of process parameters for xylanase production. Materials and Methods: The bacterium Bacillus sp. was isolated from soil by serial dilution technique on xylan agar medium and identified by morphological and biochemical studies. The production of xylanase was carried out on xylan broth medium and xylanase activity was assayed by dinitrosalicylic acid (DNS) method. The effect of cultural parameters on the production of xylanase was determined by measuring the activity of xylanase. The effect of temperature and pH on the activity of partially purified xylanase as well as substrate specificity of xylanase were examined. Results: The maximum xylanase production (4000 U/L) by a Bacillus sp. was attained when the medium containing 0.5% wheat bran xylan and peptone at pH 8.0 and 50-55°C within 48-60 h. The partially purified xylanase was optimally active at pH 9.0 and 55°C. The xylanase showed high substrate activity towards wheat bran xylan but no activity towards cellulose, carboxymethyl cellulose and starch. Thus the enzyme was alkali-thermostable and cellulase free xylanase. Conclusion: The results obtained in this study suggest that the Bacillus sp. used is highly potential and useful for the production of cellulase free xylanase. DOI: http://dx.doi.org/10.3329/jbs.v19i0.12994 J. bio-sci. 19: 7-14, 2011


1993 ◽  
Vol 39 (12) ◽  
pp. 1162-1166 ◽  
Author(s):  
A. Blanco ◽  
F. I. J. Pastor

A Bacillus strain with xylanase activity has been isolated. Maximum xylanase production was obtained when the strain was cultured in media supplemented with birchwood xylan or rice straw; production was repressed by glucose and xylose. The optimal temperature and pH for xylanase activity were 45–50 °C and 5.5–7.5, respectively. Crude xylanase was highly stable at a wide range of pH values, retaining 100% of the activity after 24 h of incubation at 37 °C in buffer at pH 10.0. Analysis by polyacrylamide gel electrophoresis and zymogram techniques showed four xylanase activity bands with apparent molecular masses of 32, 48, 61, and 66 kDa. The most active of them (molecular mass 32 kDa) apparently corresponded to a xylanase with an isoelectric point (pI) of 9.3 in isoelectrofocusing gels developed as zymograms. Four other bands with xylanase activity were detected at pIs of 7.7, 5.6, 5.0, and 4.5. Analysis for carboxymethylcellulase activity revealed that only the band of 48 kDa and the band with a pI of 7.7 showed hydrolytic activity against the cellulosic substrate.Key words: Bacillus sp., xylanase, isolation.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Abbas Akhavan Sepahy ◽  
Shokoofeh Ghazi ◽  
Maryam Akhavan Sepahy

A xylanase producer Bacillus mojavensis strain, called AG137, isolated from cotton farm (Kashan-Iran). The optimal xylanase activity reached at 55∘C & pH 9.0. Enzyme yield was studied using a medium with different agricultural wastes as inducers. Xylanase production of about 249.308 IU/mL was achieved at pH 8 and 37∘C, within 48 h submerged fermentation in enzyme production medium supplemented with 2% (w/v) oat bran as an optimum carbon source. A mixture of 1% (w/v) yeast extract and 1% (w/v) tryptone as optimum nitrogen sources, agitation speed 200 rpm, and inoculum size 2% (v/v) were the optimums for maximum production. Accordingly, xylanase yield from 194.68 IU/mL under non-optimized fermentation condition enhanced to 302.466 IU/mL in optimized condition. Screened xylanase is thermostable, presenting 70% stability at 60∘C during 30 min. Further enzyme incubation in higher temperature caused a decrease in the residual enzyme activity, yet it retained 68%–50% of its activity after 1 hour from 45∘C to 55∘C. Besides, it is stable in pH 9 and 10, maintaining over 70% of its activity for 2 h. The enzyme also could preserve 71% and 63% of its initial activity after 3 hours of pre-incubation in the same alkaline condition. Produced xylanase therefore was introduced as an alkaline-active and stable one, displaying suitable thermostability feature, confirmed by HPLC analysis. Hence, all xylanase properties highlight its promising uses in industrial scale.


2019 ◽  
Vol 19 (2) ◽  
pp. 470 ◽  
Author(s):  
Siti Nor Amira Rosli ◽  
Rohaida Che Man ◽  
Nasratun Masngut

Culture conditions including initial pH media, incubation period, inoculum size, type of carbon source, type of nitrogen source and its concentration, which affect xylanase production were screened via the one-factor-at-a-time approach. The bacteria used in the production of xylanase was isolated from the landfill site at Sg. Ikan, Kuala Terengganu, Malaysia. Three characterizations of the landfill soil were investigated for their moisture content, ash content, and pH. The culture conditions range used in the experimental work were between 6–30 h for the incubation period, with initial pH between 5–9, inoculum size between 1–20% v/v, carbon, nitrogen sources, and nitrogen source concentration between 1–5% w/v. Xylanase activity was estimated using dinitrosalicylic acid (DNS) based on the release of xylose under standard assay conditions. The landfill soil was observed to have pH between pH 3.4–7.2 with a moisture content between 12.4–33.7% and ash ranged between 3.5–4.3%. Results showed that the highest xylanase activity within studied ranges was recorded at 25.91±0.0641 U/mL with 10% (v/v) inoculum size, 1% (w/v) xylose as sole carbon source, mixture of 1% (w/v) peptone and 0.25% (w/v) ammonium sulphate as nitrogen sources, which was carried out at initial pH of 8.0 for 24 h incubation.


2009 ◽  
Vol 76 (3) ◽  
pp. 359-364
Author(s):  
S.M. Tauk-Tornisiel ◽  
M.C. Vallejo ◽  
J.C. Govone

ABSTRACT Six Penicillium strains were isolated from soil at a depth of 0 15 cm in the Juréia-Itatins Ecology Station (JIES), in the São Paulo State, Brazil. They were evaluated for xylanase production under different temperatures and carbon sources. The best carbon source and temperature were first determined in an automated Bioscreen C system, verifying the growth of microorganisms. Liquid media containing tap water with 2% carbohydrate and/or 1% nitrogen sources were used. Afterwards, Penicillium citrinum, P. fellutanum, P. rugulosum and P. decumbens were cultivated in 250 mL Erlenmeyer flasks with 50 mL of culture medium containing tap water sole 2% carbon source (fructose, glucose, mannitol, sucrose or xylose) and 1% yeast extract as a nitrogen source at pH 5.0 and 28o C, with agitation of 150 rpm for 72 hours. These same strains, except P. decumbens, and P. purpurogenum were cultivated in solid substrate with wheat bran under the same environmental conditions to study the potential of xylanase activity. Maximum xylanase activity was observed in cultures with wheat bran, without the addition of any other carbon source, using inocula containing 1 x 107 spores.mL-1 (28o C, pH 5.0, 72 h). It can be concluded that P. fellutanum and P. citrinumare a good xylanase producers under the conditions of 28º C. The results of xylanase activity were 54% less at 28º C in liquid cultures media cultures than in solid substrate.


2019 ◽  
Vol 50 (3) ◽  
Author(s):  
Al-Badran & Al-Shamary

 Seventeen local isolates of Bacillus were isolated from soil to produce extracellular xylanase under submerged fermentation process by using xylan as carbon sole source. All isolates were subjected  to quantitative scanning to select the most efficient one. The highest activity of xylanase (2680u/ml) was obtained from isolate Bacillus sp RS1. The isolate identified by 16SrRNA gene sequence of Bacillus subtilis  ( accuracy of 99%)which was matched with sequence of Bacillus subtilis VBN25 that recorded in Genebank under the Accession Number of MG027675.1.Extracted xylan from agricultural waste by acidic method(papyrus, sun flower stalks, Ibaa Wheat type, Furat wheat type and Abo Ghraib wheat type)were used as the substrate for xylanase production from Bacillus. The results  showed that the papyrus gave the highest amount of xylan (187.6 µg/ml) as compared with that of the sun flower stalks, Ibaa Wheat type, Furat wheat type and Abo Ghraib wheat type(161.3, 161.6, 157.6, 157.2) µ g/ml respectively. The results indicated that the highest  xylanase activity was 2800 u/ml produced by Bacillus subtilus when Papyrus xylan was used.


Author(s):  
Hans Wijaya ◽  
Ahmad Thontowi ◽  
Nanik Rahmani ◽  
Yopi Yopi

Several xylanases have been studied recently, but few xylanases are from marine microorganisms have been reported. Marine bacterium Bacillus sp. LBF-001 was isolated from Pari Island Kepulauan Seribu in Indonesia. The purposes of this study are to identify of 16S rDNA gene from marine bacterium LBF-001 and to optimize medium conditions including kind and concentration of biomass, nitrogen source, pH and temperature. With 16S rDNA gene analysis that LBF-001 isolate have 99% identity with Bacillus pumilus HT-Z4-B2  (KJ526885). Fermentation for producing xylanases was done by using several agricultural residues under solid-state fermentation (SSF). The optimum condition for xylanase production by isolate Bacillus sp. LBF-001 are 2.5% empty fruit bunch, 0.6% lactose broth, pH values was 6.5, temperature condition was 30oC, under submerged fermentation with shaking at 150 rpm for 48 hours fermentation and giving the xylanase activity 10.85 U/mL.


2021 ◽  
Vol 22 (8) ◽  
pp. 4214
Author(s):  
Gautam Anand ◽  
Meirav Leibman-Markus ◽  
Dorin Elkabetz ◽  
Maya Bar

Plants lack a circulating adaptive immune system to protect themselves against pathogens. Therefore, they have evolved an innate immune system based upon complicated and efficient defense mechanisms, either constitutive or inducible. Plant defense responses are triggered by elicitors such as microbe-associated molecular patterns (MAMPs). These components are recognized by pattern recognition receptors (PRRs) which include plant cell surface receptors. Upon recognition, PRRs trigger pattern-triggered immunity (PTI). Ethylene Inducing Xylanase (EIX) is a fungal MAMP protein from the plant-growth-promoting fungi (PGPF)–Trichoderma. It elicits plant defense responses in tobacco (Nicotiana tabacum) and tomato (Solanum lycopersicum), making it an excellent tool in the studies of plant immunity. Xylanases such as EIX are hydrolytic enzymes that act on xylan in hemicellulose. There are two types of xylanases: the endo-1, 4-β-xylanases that hydrolyze within the xylan structure, and the β-d-xylosidases that hydrolyze the ends of the xylan chain. Xylanases are mainly synthesized by fungi and bacteria. Filamentous fungi produce xylanases in high amounts and secrete them in liquid cultures, making them an ideal system for xylanase purification. Here, we describe a method for cost- and yield-effective xylanase production from Trichoderma using wheat bran as a growth substrate. Xylanase produced by this method possessed xylanase activity and immunogenic activity, effectively inducing a hypersensitive response, ethylene biosynthesis, and ROS burst.


Sign in / Sign up

Export Citation Format

Share Document