scholarly journals XYLANASE PRODUCTION FROM LOCAL BACTERIAL ISOLATE

2019 ◽  
Vol 50 (3) ◽  
Author(s):  
Al-Badran & Al-Shamary

 Seventeen local isolates of Bacillus were isolated from soil to produce extracellular xylanase under submerged fermentation process by using xylan as carbon sole source. All isolates were subjected  to quantitative scanning to select the most efficient one. The highest activity of xylanase (2680u/ml) was obtained from isolate Bacillus sp RS1. The isolate identified by 16SrRNA gene sequence of Bacillus subtilis  ( accuracy of 99%)which was matched with sequence of Bacillus subtilis VBN25 that recorded in Genebank under the Accession Number of MG027675.1.Extracted xylan from agricultural waste by acidic method(papyrus, sun flower stalks, Ibaa Wheat type, Furat wheat type and Abo Ghraib wheat type)were used as the substrate for xylanase production from Bacillus. The results  showed that the papyrus gave the highest amount of xylan (187.6 µg/ml) as compared with that of the sun flower stalks, Ibaa Wheat type, Furat wheat type and Abo Ghraib wheat type(161.3, 161.6, 157.6, 157.2) µ g/ml respectively. The results indicated that the highest  xylanase activity was 2800 u/ml produced by Bacillus subtilus when Papyrus xylan was used.

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Guo-Qiang Guan ◽  
Peng-Xiang Zhao ◽  
Jin Zhao ◽  
Mei-Juan Wang ◽  
Shu-Hao Huo ◽  
...  

A new fungusCladosporium oxysporumGQ-3 producing extracellular xylanase was isolated from decaying agricultural waste and identified based on the morphology and comparison of internal transcribed spacer (ITS) rDNA gene sequence.C. oxysporumproduced maximum xylanase activity of 55.92 U/mL with wheat bran as a substrate and NH4Cl as a nitrogen source. Mg2+improvedC. oxysporumxylanase production.Partially purified xylanase exhibited maximum activity at 50°C and pH 8.0, respectively, and showed the stable activity after 2-h treatment in pH 7.0–8.5 or below 55°C. Mg2+enhanced the xylanase activity by 2% while Cu2+had the highest inhibition ratio of 57.9%. Furthermore,C. oxysporumxylanase was resistant to most of tested neutral and alkaline proteases. Our findings indicated thatCladosporium oxysporumGQ-3 was a novel xylanase producer, which could be used in the textile processes or paper/feed industries.


2013 ◽  
Vol 295-298 ◽  
pp. 1098-1103
Author(s):  
Xiao Xiao Wang ◽  
Luo Jun Gong ◽  
Wei Han ◽  
Qian Qian Yan

This paper uses the method of 16SrRNA to analyze the microbial diversity in wetland wastewater treatment of Wuhan galaxy ecological agriculture Co., LTD . Using the method of 16SrRNA, we can get the molecular identification of the strain from screening , determine the 16SrRNA gene sequence and analyzes the homology of the corresponding sequence of related bacteria. The result shows that 32 strains are Bacillus subtilis, two strains are Bacillus licheniformis, six strains are Staptococcus cohnii, one strain is Staphylococcus epidermidis, one strain is Pseudomonas synxantha, and one strain is People umber bacillus in the first wetland. 36 strains are Bacillus subtilis, three strains are Bacillus licheniformis, one strains are Staptococcus cohnii, one strain is Proteus mirabilis, and two strain Staphylococcus epidermidis are the second wetland. The main strain in the two-stage wetland both are Bacillus subtilis.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Abbas Akhavan Sepahy ◽  
Shokoofeh Ghazi ◽  
Maryam Akhavan Sepahy

A xylanase producer Bacillus mojavensis strain, called AG137, isolated from cotton farm (Kashan-Iran). The optimal xylanase activity reached at 55∘C & pH 9.0. Enzyme yield was studied using a medium with different agricultural wastes as inducers. Xylanase production of about 249.308 IU/mL was achieved at pH 8 and 37∘C, within 48 h submerged fermentation in enzyme production medium supplemented with 2% (w/v) oat bran as an optimum carbon source. A mixture of 1% (w/v) yeast extract and 1% (w/v) tryptone as optimum nitrogen sources, agitation speed 200 rpm, and inoculum size 2% (v/v) were the optimums for maximum production. Accordingly, xylanase yield from 194.68 IU/mL under non-optimized fermentation condition enhanced to 302.466 IU/mL in optimized condition. Screened xylanase is thermostable, presenting 70% stability at 60∘C during 30 min. Further enzyme incubation in higher temperature caused a decrease in the residual enzyme activity, yet it retained 68%–50% of its activity after 1 hour from 45∘C to 55∘C. Besides, it is stable in pH 9 and 10, maintaining over 70% of its activity for 2 h. The enzyme also could preserve 71% and 63% of its initial activity after 3 hours of pre-incubation in the same alkaline condition. Produced xylanase therefore was introduced as an alkaline-active and stable one, displaying suitable thermostability feature, confirmed by HPLC analysis. Hence, all xylanase properties highlight its promising uses in industrial scale.


2016 ◽  
Vol 6 (01) ◽  
Author(s):  
Erika Erika ◽  
Rochmah Agustrina ◽  
Sumardi Sumardi ◽  
Mulyono Mulyono

Xylan is a carbon source in growth medium of extracellular xylanase producing bacteria. The purpose of this study was to get the optimum medium for the growth of Bacillus sp. in producing the xylanase. The factors consist of production time, carbon, and nitrogen source, as well as simple sugars. Addition carbon source used was delignified sugarcane bagasse, rice hulls, and corn cobs with different concentrations (0.25%; 0.5%; 0.75%; and 1% w/v) . Ammonium chloride, ammonium sulfate, and sodium nitrate with different concentrations (0.08%; 0.17%; 0.26%; and 0.35% w/v) were used as a source of nitrogen, while the simple sugar used was glucose, lactose, sucrose, and xylose. The results showed that the optimum culture media of Bacillus sp. to produce xylanase is media with 0.25% natural starch from the corn cob xylan as a carbon source, 0.26% ammonium chloride as a source of nitrogen, 0.0625 grams of sugar xylose, at pH 6, incubation temperature of 40°C, and 12 hours production time. In that media, xylanase activity was 0.2 U/mL.Keywords: agricultural waste, medium optimization, xylanase, Bacillus sp.   ABSTRAKXilan merupakan sumber karbon pada media pertumbuhan bakteri penghasil enzim ekstraseluler xilanase. Tujuan penelitian ini adalah mendapatkan media optimum untuk pertumbuhan Bacillus sp. dalam memproduksi xilanase. Perlakuan percobaan terdiri dari waktu produksi, sumber karbon, sumber nitrogen, dan penambahan gula sederhana. Sumber karbon yang digunakan adalah bagas tebu, sekam padi, dan tongkol jagung dengan variasi konsentrasi 0,25%; 0,5%; 0,75%; dan 1% (b/v) . Amonium klorida, amonium sulfat, dan natrium nitrat dengan variasi konsentrasi 0,08%; 0,17%; 0,26%; dan 0,35% (b/v) digunakan sebagai sumber nitrogen, sedangkan gula sederhana yang digunakan adalah glukosa, laktosa, sukrosa, dan xilosa masing-masing sebanyak 0,0625 b/v. Hasil percobaan menunjukkan bahwa media optimum pertumbuhan Bacillus sp. untuk produksi xilanase adalah media dengan 0,25% tepung xilan dari tongkol jagung sebagai sumber karbon, 0,26% amonium klorida sebagai sumber nitrogen, 0,0625 gram gula xilosa, pada pH media 6, suhu inkubasi 40°C, serta waktu produksi 12 jam. Dalam media tersebut, aktivitas xilanase yang dihasilkan sebesar 0,2 U/mL.Kata kunci : limbah pertanian, optimasi media, xilanase, Bacillus sp. 


Author(s):  
D. T. Ha ◽  
A. V. Kanarskiy ◽  
Z. A. Kanarskaya ◽  
A. V. Scherbakov ◽  
E. N. Scherbakova ◽  
...  

Xylanase is an enzyme that hydrolyses β-1,4 bonds in plant xylan. This enzyme is applied in the bioconversion of agro-industrial waste for xylooligosaccharide hydrolysate production to improve digestibility and nutrition value of animal feed, food processing, the utilisation and faster decomposition of crop debris in soil, as well as in cellulose bleaching and other industries. The current trend focuses on using renewable resources, such as agricultural waste, as substitutes for expensive purified xylan in producer screening and xylanase synthesis. This work aimed to determine the impact of Paenibacillus mucilaginosus cultivation conditions on the xylanase production yield. Rice bran ferment lysate along with birch and beech timber xylans were used as a carbon source. Temperature, medium pH, pH correction factors, inoculant incubation time, carbon and nitrogen sources and concentrations were the studied criteria of xylanase biosynthesis and growth in bacteria P. ucilaginosus strain 560. We show that the xylanase biosynthesis and cultivation in P. mucilaginosus strain 560 are more practical and cost-effective with the use of a rice bran ferment lysate-based nutrient medium. Inductors contained in the rice bran ferment lysate improve the xylanase biosynthesis. Calcium ions also facilitate biosynthesis in the studied strain. Cultivation recommendations are: carbon source concentration in medium 0.5% of total reducing substances content; 0.2% carbamide as optimal nitrogen source; calcium hydroxide as an agent for medium pH correction to 6.0±0.2; cultivation temperature 30±1 °С. Under the specified conditions, cultivation of P. mucilaginosus does not require inoculate preprocessing, and a maximal xylanase activity in stationary culture reaches 20 U/mL.


2021 ◽  
Vol 22 (8) ◽  
pp. 4214
Author(s):  
Gautam Anand ◽  
Meirav Leibman-Markus ◽  
Dorin Elkabetz ◽  
Maya Bar

Plants lack a circulating adaptive immune system to protect themselves against pathogens. Therefore, they have evolved an innate immune system based upon complicated and efficient defense mechanisms, either constitutive or inducible. Plant defense responses are triggered by elicitors such as microbe-associated molecular patterns (MAMPs). These components are recognized by pattern recognition receptors (PRRs) which include plant cell surface receptors. Upon recognition, PRRs trigger pattern-triggered immunity (PTI). Ethylene Inducing Xylanase (EIX) is a fungal MAMP protein from the plant-growth-promoting fungi (PGPF)–Trichoderma. It elicits plant defense responses in tobacco (Nicotiana tabacum) and tomato (Solanum lycopersicum), making it an excellent tool in the studies of plant immunity. Xylanases such as EIX are hydrolytic enzymes that act on xylan in hemicellulose. There are two types of xylanases: the endo-1, 4-β-xylanases that hydrolyze within the xylan structure, and the β-d-xylosidases that hydrolyze the ends of the xylan chain. Xylanases are mainly synthesized by fungi and bacteria. Filamentous fungi produce xylanases in high amounts and secrete them in liquid cultures, making them an ideal system for xylanase purification. Here, we describe a method for cost- and yield-effective xylanase production from Trichoderma using wheat bran as a growth substrate. Xylanase produced by this method possessed xylanase activity and immunogenic activity, effectively inducing a hypersensitive response, ethylene biosynthesis, and ROS burst.


2017 ◽  
Vol 30 (11) ◽  
pp. 886-895 ◽  
Author(s):  
Maria Chiara Paccanaro ◽  
Luca Sella ◽  
Carla Castiglioni ◽  
Francesca Giacomello ◽  
Ana Lilia Martínez-Rocha ◽  
...  

Endo-polygalacturonases (PGs) and xylanases have been shown to play an important role during pathogenesis of some fungal pathogens of dicot plants, while their role in monocot pathogens is less defined. Pg1 and xyr1 genes of the wheat pathogen Fusarium graminearum encode the main PG and the major regulator of xylanase production, respectively. Single- and double-disrupted mutants for these genes were obtained to assess their contribution to fungal infection. Compared with wild-type strain, the ∆pg mutant showed a nearly abolished PG activity, slight reduced virulence on soybean seedlings, but no significant difference in disease symptoms on wheat spikes; the ∆xyr mutant was strongly reduced in xylanase activity and moderately reduced in cellulase activity but was as virulent as wild type on both soybean and wheat plants. Consequently, the ΔpgΔxyr double mutant was impaired in xylanase, PG, and cellulase activities but, differently from single mutants, was significantly reduced in virulence on both plants. These findings demonstrate that the concurrent presence of PG, xylanase, and cellulase activities is necessary for full virulence. The observation that the uronides released from wheat cell wall after a F. graminearum PG treatment were largely increased by the fungal xylanases suggests that these enzymes act synergistically in deconstructing the plant cell wall.


2017 ◽  
Vol 3 (5) ◽  
pp. 139
Author(s):  
Mariana Wahjudi ◽  
Catherina . ◽  
Nita Marcelia Wangunhardjo ◽  
Ernest Suryadjaja ◽  
Xavier Daniel

<p class="Els-Abstract-text">The <em>xyn</em>B gene of <em>Bacillus</em><em> subtilis</em> subsp. spizizenii W23 is predicted to encode a xylan 1,4-beta-xylosidase. Application of XynB enzymes in industries is wide. Production of this enzyme in its host cells is naturally restricted by repression process. It will give certain beneficial to over-expressed the enzymes in other host-cells under inducing promoter. This study aimed to clone the <em>xyn</em>B gene from <em>Bacillus</em><em> subtilis</em> subsp. spizizenii W23, to pMMB67EH plasmid, and to over-express the <em>xyn</em>B gene in <em>Escherichia coli </em>Origami as host cells. The <em>x</em><em>yn</em>B gene was successfully amplified by polymerase chain reaction (PCR) technique using a pair of primers flanking the gene sequence and chromosomal DNA of the W23 strain as a template. The <em>xyn</em>B gene inserted in recombinant plasmid was confirmed by PCR detection using primers pair’s specific for <em>xyn</em>B gene and for the vector, then continued by restriction analyses.  The result showed that transformants clone 9 and 10 bear the recombinant pMMB-<em>xyn</em>B plasmid. The xylanase activity of <em>xyn</em>B gene in <em>Escherichia coli</em> Origami clone 10 was detected by sodium-dodecyl-sulfate polyacrylamide gel analyses and with addition of isopropyl-β-D-thio-galactoside (IPTG) as an inducer. The protein seem to be over-expressed as intra- and extra-cellular protein detected on SDS-PAGE gel. Result from xylan degrading activity on Luria-Bertani-xylan-IPTG plate with addition of Congo Red, showed that the cells with pMMB-<em>xyn</em>B recombinant plasmid have clear zone around the colonies while the transformant bearing an empty plasmid showed no clear zone. It could be concluded that the <em>xyn</em>B gene of <em>Bacillus subtilis</em> subsp.spizizenii W23 has been successfully been cloned on pMMB67EH plasmid and over-expressed in the <em>Escherichia coli</em> Origami cells as intra- and extra-cellular protein, as observed on SDS-PAGE gel analysis. The protein has activity on xylan degradation.</p>


2019 ◽  
Vol 84 (7) ◽  
pp. 679-688 ◽  
Author(s):  
Hamida Hamdi ◽  
Amina Hellal

The ability of newly isolated bacteria, identified as Bacillus subtilis immobilized on alginate hydrogel beads, to degrade phenol was investigated under different parameters, such as phenol concentration, bead diameter and inoculums size, and was optimized using full factorial design methodology. A mathematical model that governs the degradation of phenol by the immobilized system was obtained and it fitted the experimental data very well. The model indicated that within the range of variables employed, all the parameters and their interactions influenced the biodegradation process, whereby the phenol concentration was the most significant factor. B. subtilis revealed a very high degradation activity and could be grown using phenol as the sole source of carbon. Phenol was degraded by the new bacteria in 8 h under the optimum conditions obtained by the desirability function: 100 mg L-1 phenol concentration, 3 mm beads diameter and 244.5 mg of cell dry per liter biomass size, with a desirability value of 91.25 %.


Sign in / Sign up

Export Citation Format

Share Document