scholarly journals Infant Pneumococcal Carriage in Belgium Not Affected by COVID-19 Containment Measures

Author(s):  
Laura Willen ◽  
Esra Ekinci ◽  
Lize Cuypers ◽  
Heidi Theeten ◽  
Stefanie Desmet

Streptococcus pneumoniae is an important and frequently carried respiratory pathogen that has the potential to cause serious invasive diseases, such as pneumonia, meningitis, and sepsis. Young children and older adults are among the most vulnerable to developing serious disease. With the arrival of the COVID-19 pandemic and the concomitant restrictive measures, invasive disease cases caused by respiratory bacterial species, including pneumococci, decreased substantially. Notably, the stringency of the containment measures as well as the visible reduction in the movement of people appeared to coincide with the drop in invasive disease cases. One could argue that wearing protective masks and adhering to social distancing guidelines to halt the spread of the SARS-CoV-2 virus, also led to a reduction in the person-to-person transmission of respiratory bacterial species. Although plausible, this conjecture is challenged by novel data obtained from our nasopharyngeal carriage study which is performed yearly in healthy daycare center attending children. A sustained and high pneumococcal carriage rate was observed amid periods of stringent restrictive measures. This finding prompts us to revisit the connection between nasopharyngeal colonization and invasion and invites us to look closer at the nasopharyngeal microbiome as a whole.

2020 ◽  
Author(s):  
Angela B Brueggemann ◽  
Melissa J Jansen van Rensburg ◽  
David Shaw ◽  
Noel McCarthy ◽  
Keith A Jolley ◽  
...  

AbstractBackgroundStreptococcus pneumoniae, Haemophilus influenzae and Neisseria meningitidis are leading causes of invasive diseases including bacteraemic pneumonia and meningitis, and of secondary infections post-viral respiratory disease. They are typically transmitted via respiratory droplets. We investigated rates of invasive disease due to these pathogens during the early phase of the COVID-19 pandemic.MethodsLaboratories in 26 countries across six continents submitted data on cases of invasive disease due to S pneumoniae, H influenzae and N meningitidis from 1 January 2018 to 31 May 2020. Weekly cases in 2020 vs 2018-2019 were compared. Streptococcus agalactiae data were collected from nine laboratories for comparison to a non-respiratory pathogen. The stringency of COVID-19 containment measures was quantified by the Oxford COVID-19 Government Response Tracker. Changes in population movements were assessed by Google COVID-19 Community Mobility Reports. Interrupted time series modelling quantified changes in rates of invasive disease in 2020 relative to when containment measures were imposed.FindingsAll countries experienced a significant, sustained reduction in invasive diseases due to S pneumoniae, H influenzae and N meningitidis, but not S agalactiae, in early 2020, which coincided with the introduction of COVID-19 containment measures in each country. Similar impacts were observed across most countries despite differing stringency in COVID-19 control policies. There was no evidence of a specific effect due to enforced school closures.InterpretationThe introduction of COVID-19 containment policies and public information campaigns likely reduced transmission of these bacterial respiratory pathogens, leading to a significant reduction in life-threatening invasive diseases in many countries worldwide.


2007 ◽  
Vol 14 (5) ◽  
pp. 593-599 ◽  
Author(s):  
Penny Salt ◽  
Carly Banner ◽  
Sarah Oh ◽  
Ly-mee Yu ◽  
Susan Lewis ◽  
...  

ABSTRACT Children who have siblings and/or who attend day care have higher rates of nasopharyngeal colonization with pneumococci than lone children do. Pneumococcal colonization is usually asymptomatic but is a prerequisite for invasive disease. We studied the effect of social mixing with other children on immunity to a pneumococcal vaccine. One hundred sixty children aged 1 year were immunized with a 7-valent conjugate pneumococcal vaccine. A blood sample was obtained before and 9 to 11 days after the vaccine. The concentration and avidity of antibody against vaccine pneumococcal serotypes (4, 6B, 9V, 14, 18C, 19F, and 23F) were studied in relation to pneumococcal carriage rate and measures of social mixing. Children with increased social mixing had higher antibody concentrations against serotypes 4, 9V, 14, and 23F than lone children did. The least-carried serotype, serotype 4, was the one of the most immunogenic. This contrasts with serotype 6B, the most common nasopharyngeal isolate but the least immunogenic. Social mixing in infancy enhances the immune response to a Streptococcus pneumoniae polysaccharide-protein conjugate vaccine at 1 year of age. Exposure to pneumococci in the first year of life may induce immunological priming. An alternative explanation is that differences in immunological experience, such as increased exposure to respiratory viral infections in early childhood, alters the response to vaccines perhaps by affecting the balance between Th1 and Th2 cytokines. The low immunogenicity of serotype 6B polysaccharide might make conditions more favorable for carriage of the 6B organism and explain why 6B pneumococci were more frequently isolated than other serotypes.


2020 ◽  
Vol 10 (1) ◽  
pp. 111-120
Author(s):  
S. Yu. Kombarova ◽  
A. M. Bichucher ◽  
Y. L. Soldatsky ◽  
R. Yu. Yunusova ◽  
T. A. Skirda ◽  
...  

Meningococcal, pneumococcal, streptococcal A and Haemophilus influenzae infections are manifested in different clinical forms, ranging from bacterial carriage to generalized life-threatening conditions. However, a connection between bacterial carriage and disease development has not been fully explored. A PCR assay was performed with adenoid biopsy samples collected from 112 children after planned adenotomy to detect Neisseria meningitidis, Streptococcus pneumoniae, Streptococcus pyogenes, H. influenzae carriage. A DNA specific to at least one of the four studied microbial species was found in 104 samples (92.86%) so that: meningococcal DNA was detected in one sample (0.9%), pneumococcal — in 98 (87.5%), H. influenzae — in 19 (16.96%), and streptococcal A — in 42 (37.5%) samples. However, none of these species was found in 8 children (7.14%). A sole S. pneumoniae was detected in 54 samples (48.2%), whereas S. pyogenes — in 5 samples (4.5%). Moreover, two bacterial species were simultaneously as follows: N. meningitidis and S. pneumoniae — in 1 sample (0.9%), S. pneumoniae and H. influenzae — in 7 samples (6.3%); H. influenzae and S. pyogenes — in 1 sample (0.9%); S. pneumoniae and S. pyogenes — in 25 samples (22.3%). A triple combination consisting of S. pneumoniae, H. influenzae and S. pyogenes bacteria were detected together in 11 patients (9.8%). Meningococcal serogrouping revealed no connection with any of the 6 most common global serogroups responsible for epidemic incidence rise (A, B, C, W-135, X, Y). A clear tendency for prevalence of S. pyogenes DNA in adenoid pediatric biopsies in children diagnosed with “Adenoids and tonsils hypertrophy” vs. “Adenoids hypertrophy” was observed. It is noteworthy, a high relative prevalence of pneumococcal carriage (87.5%), found by us was of special importance. Pediatric carriers serving as a reservoir for virulent pneumococcal species pose a threat both for themselves and surrounding people. Thus, PCR-based data of adenoid biopsies may be a promising approach for future studies, as a potential to identify live viable but nonculturable bacteria in clinical specimens will contribute to a more accurate assessment of carriage rate of meningococci, pneumococci, H. influenzae and group A streptococci.


2016 ◽  
Vol 144 (15) ◽  
pp. 3226-3236 ◽  
Author(s):  
J. E. NAVNE ◽  
M. L. BØRRESEN ◽  
H. C. SLOTVED ◽  
M. ANDERSSON ◽  
M. MELBYE ◽  
...  

SUMMARYThe incidence of childhood respiratory infections in Greenland is among the highest globally. We performed a population-based study of 352 Greenlandic children aged 0–6 years aiming to describe rates and risk factors for carriage of four key bacteria associated with respiratory infections, their antimicrobial susceptibility and inter-bacterial associations. Nasopharyngeal swabs were tested for Streptococcus pneumoniae grouped by serotypes included (VT) or not included (NVT) in the 13-valent pneumococcal conjugate vaccine, non-typable Haemophilus influenzae (NTHi), Staphylococcus aureus and Moraxella catarrhalis. S. pneumoniae was detected from age 2 weeks with a peak carriage rate of 60% in 2-year-olds. Young age and having siblings attending a daycare institution were associated with pneumococcal carriage. Overall co-colonization with ⩾2 of the studied bacteria was 52%. NTHi showed a positive association with NVT pneumococci and M. catarrhalis, respectively, M. catarrhalis was positively associated with S. pneumoniae, particular VT pneumococci, whereas S. aureus were negatively associated with NTHi and M. catarrhalis. Nasopharyngeal bacterial carriage was present unusually early in life and with frequent co-colonization. Domestic crowding increased odds of carriage. Due to important bacterial associations we suggest future surveillance of pneumococcal conjugate vaccine's impact on carriage in Greenland to also include other pathogens.


2016 ◽  
Vol 3 (3) ◽  
Author(s):  
Monique T. Barakat ◽  
Kiran Gajurel ◽  
Katrina Fischer ◽  
Kathryn Stevens ◽  
Errol Ozdalga ◽  
...  

Abstract The clinical spectrum of Neisseria meningitidis can range from nasopharyngeal colonization to life-threatening invasive diseases such as meningitis. However, its etiologic role in invasive pyomyositis (PM) has never been reported before in the English language. In this study, we report the first case of PM in the English language and the second case in the literature caused by N meningitidis.


2020 ◽  
Vol 5 ◽  
pp. 25
Author(s):  
Ben Morton ◽  
Sarah Burr ◽  
Kondwani Jambo ◽  
Jamie Rylance ◽  
Marc Y.R. Henrion ◽  
...  

Streptococcus pneumoniae is the leading cause of morbidity and mortality due to community acquired pneumonia, bacterial meningitis and bacteraemia worldwide. Pneumococcal conjugate vaccines protect against invasive disease, but are expensive to manufacture, limited in serotype coverage, associated with serotype replacement and demonstrate reduced effectiveness against mucosal colonisation.  As asymptomatic colonisation of the human nasopharynx is a prerequisite for pneumococcal disease, this is proposed as a marker for novel vaccine efficacy. Our team established a safe and reproducible pneumococcal controlled human infection model at Liverpool School of Tropical Medicine (LSTM). This has been used to test vaccine induced protection against nasopharyngeal carriage for ten years in over 1000 participants. We will transfer established standardised operating procedures from LSTM to Malawi and test in up to 36 healthy participants. Primary endpoint: detection of the inoculated pneumococci by classical culture from nasal wash recovered from the participants after pneumococcal challenge. Secondary endpoints: confirmation of robust clinical and laboratory methods for sample capture and processing. Tertiary endpoints: participant acceptability of study and methods. We will test three doses of pneumococcal inoculation (20,000, 80,000 and 160,000 colony forming units [CFUs] per naris) using a parsimonious study design intended to reduce unnecessary exposure to participants. We hypothesise that 80,000 CFUs will induce nasal colonisation in approximately half of participants per established LSTM practice. The aims of the feasibility study are: 1) Establish Streptococcus pneumoniae experimental human pneumococcal carriage in Malawi; 2) Confirm optimal nasopharyngeal pneumococcal challenge dose; 3) Confirm safety and measure potential symptoms; 4) Confirm sampling protocols and laboratory assays; 5) Assess feasibility and acceptability of consent and study procedures. Confirmation of pneumococcal controlled human infection model feasibility in Malawi will enable us to target pneumococcal vaccine candidates for an at-risk population who stand the most to gain from new and improved vaccine strategies.


2014 ◽  
Vol 176 (14) ◽  
pp. 357-357 ◽  
Author(s):  
M. Rheinwald ◽  
K. Hartmann ◽  
M. Hähner ◽  
G. Wolf ◽  
R. K. Straubinger ◽  
...  

The aim of this study was to investigate the prevalence of bacterial species isolated from bronchoalveolar lavage fluid (BALF) samples taken from dogs with respiratory signs and to determine their antibiotic susceptibility. Clinical cases were included in the study if they showed signs of respiratory disease and data relating to bacterial culture and susceptibility of BALF samples were available. The medical records of 493 privately owned dogs that were presented between January 1989 and December 2011 were evaluated retrospectively. In 35 per cent of samples, no bacteria were cultured. Bacteria isolated from culture-positive samples included Streptococcus species (31 per cent of positive cultures), Enterobacteriaceae (30 per cent, including Escherichia coli (15 per cent)), Staphylococcus species (19 per cent), Pasteurella species (16 per cent) and Pseudomonas species (14 per cent). Bordetella bronchiseptica as a primary respiratory pathogen was isolated in 8 per cent of cases. Enrofloxacin showed the best susceptibility pattern; 86 per cent of all isolates and 87 per cent of Gram-negative bacteria were susceptible to this antibiotic. Amoxicillin/clavulanic acid yielded the best susceptibility pattern in Gram-positive bacteria (92 per cent). Therefore, these antibiotics can be recommended for empirical or first-line treatment in dogs with bacterial lower respiratory tract infections.


2020 ◽  
Vol 41 (01) ◽  
pp. 131-140 ◽  
Author(s):  
Jonathan T. Arcobello ◽  
Sanjay G. Revankar

AbstractPhaeohyphomycosis refers to infections due to a large group of heterogenous organisms called “dematiaceous” or “melanized” fungi. These fungi are distinguished by the predominance of melanin in their cell walls, which likely acts as a virulence factor. Virtually, everyone is exposed to dematiaceous fungi through inhalation, as they are ubiquitous in the environment, although the development of infection is extremely uncommon. Invasive disease is rare but remains important due to the ability to cause serious disease in immunocompetent and immunocompromised hosts, unlike other fungal infections such as aspergillosis. A large variety of invasive manifestations can be caused by these organisms, including deep local infections, pulmonary infection, cerebral infection, and disseminated disease, which is associated with high mortality. While advances in molecular techniques are promising, they have still not replaced histology and culture as the primary diagnostic tools. Therapy is not standardized and is based primarily on clinical experience from descriptive case reports.


2018 ◽  
Vol 87 (2) ◽  
Author(s):  
Jeroen D. Langereis ◽  
Amelieke J. H. Cremers ◽  
Marloes Vissers ◽  
Josine van Beek ◽  
Jacques F. Meis ◽  
...  

ABSTRACTNontypeableHaemophilus influenzae(NTHi) bacteria express various molecules that contribute to their virulence. The presence of phosphocholine (PCho) on NTHi lipooligosaccharide increases adhesion to epithelial cells and is an advantage for the bacterium, enabling nasopharyngeal colonization, as measured in humans and animal models. However, when PCho is expressed on the lipooligosaccharide, it is also recognized by the acute-phase protein C-reactive protein (CRP) and PCho-specific antibodies, both of which are potent initiators of the classical pathway of complement activation. In this study, we show that blood isolates, which are exposed to CRP and PCho-specific antibodies in the bloodstream, have a higher survival in serum than oropharyngeal isolates, which was associated with a decreased presence of PCho. PCholowstrains showed decreased IgM, CRP, and complement C3 deposition, which was associated with increased survival in human serum. Consistent with the case for the PCholowstrains, removal of PCho expression bylicAgene deletion decreased IgM, CRP, and complement C3 deposition, which increased survival in human serum. Complement-mediated killing of PChohighstrains was mainly dependent on binding of IgM to the bacterial surface. These data support the hypothesis that a PCholowphenotype was selected in blood during invasive disease, which increased resistance to serum killing, mainly due to lowered IgM and CRP binding to the bacterial surface.


2020 ◽  
Vol 26 (6) ◽  
pp. 834-837
Author(s):  
Carla Prezioso ◽  
Valeria Pietropaolo

AbstractOn the March 11, 2020, the World Health Organization (WHO) declared the novel coronavirus disease 2019 (COVID-19) outbreak as a pandemic. The first cases in Italy were reported on January 30, 2020, and quickly the number of cases escalated. On March 20, 2020, according to the Italian National Institute of Health (ISS) and National Institute of Statistics (ISTAT), the peak of COVID-19 cases reported in Italy reached the highest number, surpassing those in China. The Italian government endorsed progressively restrictive measures initially at the local level, and finally, at the national level with a lockdown of the entire Italian territory up to 3 May 2020. The complete Italian territory closing slowed down the contagion. This review retraces the main numbers of the pandemic in Italy. Although in decline, the new reported cases remain high in the northern regions. Since drugs or vaccines are still not available, the described framework highlights the importance of the containment measures to be able to quickly identify all the potential transmission hotspots and keep control subsequent epidemic waves of COVID-19.


Sign in / Sign up

Export Citation Format

Share Document