scholarly journals Assessment of Canopy Conductance Responses to Vapor Pressure Deficit in Eight Hazelnut Orchards Across Continents

2021 ◽  
Vol 12 ◽  
Author(s):  
Gaia Pasqualotto ◽  
Vinicio Carraro ◽  
Eloy Suarez Huerta ◽  
Tommaso Anfodillo

A remarkable increase in vapor pressure deficit (VPD) has been recorded in the last decades in relation to global warming. Higher VPD generally leads to stomatal closure and limitations to leaf carbon uptake. Assessing tree conductance responses to VPD is a key step for modeling plant performances and productivity under future environmental conditions, especially when trees are cultivated well outside their native range as for hazelnut (Corylus spp.). Our main aim is to assess the stand-level surface canopy conductance (Gsurf) responses to VPD in hazelnut across different continents to provide a proxy for potential productivity. Tree sap flow (Fd) was measured by Thermal dissipation probes (TDP) probes (six per sites) in eight hazelnut orchards in France, Italy, Georgia, Australia, and Chile during three growing seasons since 2016, together with the main meteorological parameters. We extracted diurnal Fd to estimate the canopy conductance Gsurf.. In all the sites, the maximum Gsurf occurred at low values of VPD (on average 0.57 kPa) showing that hazelnut promptly avoids leaf dehydration and that maximum leaf gas exchange is limited at relatively low VPD (i.e., often less than 1 kPa). The sensitivity of the conductance vs. VPD (i.e., -dG/dlnVPD) resulted much lower (average m = −0.36) compared to other tree species, with little differences among sites. We identified a range of suboptimal VPD conditions for Gsurf maximization (Gsurf > 80% compared to maximum) in each site, named “VPD80,” which multiplied by the mean Gsurf might be used as a proxy for assessing the maximum gas exchange of the orchard with a specific management and site. Potential gas exchange appeared relatively constant in most of the sites except in France (much higher) and in the driest Australian site (much lower). This study assessed the sensitivity of hazelnut to VPD and proposed a simple proxy for predicting the potential gas exchange in different areas. Our results can be used for defining suitability maps based on average VPD conditions, thus facilitating correct identification of the potentially most productive sites.

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 501c-501
Author(s):  
Andrés A. Estrada-Luna ◽  
Jonathan N. Egilla ◽  
Fred T. Davies

The effect of mycorrhizal fungi on gas exchange of micropropagated guava plantlets (Psidium guajava L.) during acclimatization and plant establishment was determined. Guava plantlets (Psidium guajava L. cv. `Media China') were asexually propagated through tissue culture and acclimatized in a glasshouse for eighteen weeks. Half of the plantlets were inoculated with ZAC-19, which is a mixed isolate containing Glomus etunicatum and an unknown Glomus spp. Plantlets were fertilized with modified Long Ashton nutrient solution containing 11 (g P/ml. Gas exchange measurements included photosynthetic rate (A), stomatal conductance (gs), internal CO2 concentration (Ci), transpiration rate (E), water use efficiency (WUE), and vapor pressure deficit (VPD). Measurements were taken at 2, 4, 8 and 18 weeks after inoculation using a LI-6200 portable photosynthesis system (LI-COR Inc. Lincoln, Neb., USA). Two weeks after inoculation, noninoculated plantlets had greater A compared to mycorrhizal plantlets. However, 4 and 8 weeks after inoculation, mycorrhizal plantlets had greater A, gs, Ci and WUE. At the end of the experiment gas exchange was comparable between noninoculated and mycorrhizal plantlets.


2012 ◽  
Vol 39 (1) ◽  
pp. 53-61 ◽  
Author(s):  
Maria Balota ◽  
Steve McGrath ◽  
Thomas G. Isleib ◽  
Shyam Tallury

Abstract Water deficit, i.e., rainfall amounts and distribution, is the most common abiotic stress that limits peanut production worldwide. Even though extensive research efforts have been made to improve drought tolerance in peanut, performance of genotypes largely depends upon the environment in which they grow. Based on greenhouse experiments, it has been hypothesized that stomata closure under high vapor pressure deficit (VPD) is a mechanism of soil water conservation and it has been shown that genotypic variation for the response of transpiration rate to VPD in peanut exists. The objective of this study was to determine the relationship between stomatal conductance (gs) and VPD for field grown peanut in Virginia-Carolina (VC) rainfed environments. In 2009, thirty virginia-type peanut cultivars and advanced breeding lines were evaluated for gs at several times before and after rain events, including a moisture stress episode. In 2010, eighteen genotypes were evaluated for gs under soil water deficit. In 2009, VPD ranged from 1.3 to 4.2 kPa and in 2010 from 1.78 to 3.57 kPa. Under water deficit, genotype and year showed a significant effect on gs (P  =  0.0001), but the genotype × year interaction did not. During the water deficit episodes while recorded gs values were relatively high, gs was negatively related to VPD (R2  =  0.57, n  =  180 in 2009; R2  =  0.47, n  =  108 in 2010), suggesting that stomata closure is indeed a water conservation mechanism for field grown peanut. However, a wide range of slopes among genotype were observed in both years. Genotypes with significant negative relationships of gs and VPD under water deficit in both years were Florida Fancy, Gregory, N04074FCT, NC-V11, and VA-98R. While Florida Fancy, Gregory, and NC-V11 are known to be high yielding cultivars, VA-98R and line N04074FCT are not. The benefit of stomatal closure during drought episodes in the VC environments is further discussed in this paper.


2014 ◽  
Vol 522-524 ◽  
pp. 1055-1058
Author(s):  
Jing Li ◽  
Xiao Guang Wang ◽  
Gui Zhai Zhang ◽  
Xue Wei Hou ◽  
Xiao Ming Li

Response of gas exchange to VPD in leaves of four trees (Prunus serrulata, Prunus lannesiana, Populus deltoides I-69 (I-69) and Populus × euramericana Neva (I-107)) at the campus of Shandong University in Jinan, Shandong Province were measured. The result showed that: the stomatal conductance increased with increasing VPD, and gs reached gs-max at intermediate VPD, and a steady decline in gs with further increases in VPD. This response pattern was fitted by a parabolic curve (gs=aD2+bD+c, D=VPD, R2>0.52). The gs-max at intermediate VPD with changing VPD showed that there was an optimal VPD (or RH) to plants. Therefore, while VPD (or RH) was higher or lower than the optimal VPD (or RH) of plant, gs would decrease. The response of gs to VPD in I-69 and I-107 were much more sensitive than P. serrulata and P. lannesiana.


2002 ◽  
Vol 29 (12) ◽  
pp. 1377 ◽  
Author(s):  
Katharina Siebke ◽  
Oula Ghannoum ◽  
Jann P. Conroy ◽  
Susanne von Caemmerer

This study investigates the effect of elevated CO2 partial pressure (pCO2)-induced stomatal closure on leaf temperature and gas exchange of C4 grasses. Two native Australian C4 grasses, Astrebla lappacea (Lindl.) Domin and Bothriochloa bladhii Kuntze, were grown at three different pCO2 (35, 70 and 120 Pa) in three matched, temperature-controlled glasshouse compartments. The difference between leaf and air temperature (ΔT) was monitored diurnally with thermocouples. ΔT increased with both step-increases of ambient pCO2. Average noon leaf temperature increased by 0.4 and 0.3°C for A. lappacea with the 35–70 and 70–120 Pa steps of pCO2 elevation, respectively. For B. bladhii, the increases were 0.5°C for both pCO2 steps. ΔT was strongly dependent on irradiance, pCO2 and air humidity. Leaf gas exchange was measured at constant temperature and high irradiance at the three growth pCO2. Under these conditions, CO2 assimilation saturated at 70 Pa, while stomatal conductance decreased by the same extent (0.58-fold) with both step-increases in pCO2, suggesting that whole-plant water use efficiency of C4 grasses would increase beyond a doubling of ambient pCO2. The ratio of intercellular to ambient pCO2 was not affected by short- or long-term doubling or near-tripling of pCO2, in either C4 species when measured under standard conditions.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 120
Author(s):  
Dorra Fakhet ◽  
Fermín Morales ◽  
Iván Jauregui ◽  
Gorka Erice ◽  
Pedro M. Aparicio-Tejo ◽  
...  

Low atmospheric relative humidity (RH) accompanied by elevated air temperature and decreased precipitation are environmental challenges that wheat production will face in future decades. These changes to the atmosphere are causing increases in air vapor pressure deficit (VPD) and low soil water availability during certain periods of the wheat-growing season. The main objective of this study was to analyze the physiological, metabolic, and transcriptional response of carbon (C) and nitrogen (N) metabolism of wheat (Triticum durum cv. Sula) to increases in VPD and soil water stress conditions, either alone or in combination. Plants were first grown in well-watered conditions and near-ambient temperature and RH in temperature-gradient greenhouses until anthesis, and they were then subjected to two different water regimes well-watered (WW) and water-stressed (WS), i.e., watered at 50% of the control for one week, followed by two VPD levels (low, 1.01/0.36 KPa and high, 2.27/0.62 KPa; day/night) for five additional days. Both VPD and soil water content had an important impact on water status and the plant physiological apparatus. While high VPD and water stress-induced stomatal closure affected photosynthetic rates, in the case of plants watered at 50%, high VPD also caused a direct impairment of the RuBisCO large subunit, RuBisCO activase and the electron transport rate. Regarding N metabolism, the gene expression, nitrite reductase (NIR) and transport levels detected in young leaves, as well as determinations of the δ15N and amino acid profiles (arginine, leucine, tryptophan, aspartic acid, and serine) indicated activation of N metabolism and final transport of nitrate to leaves and photosynthesizing cells. On the other hand, under low VPD conditions, a positive effect was only observed on gene expression related to the final step of nitrate supply to photosynthesizing cells, whereas the amount of 15N supplied to the roots that reached the leaves decreased. Such an effect would suggest an impaired N remobilization from other organs to young leaves under water stress conditions and low VPD.


Sign in / Sign up

Export Citation Format

Share Document