vapor pressure deficit
Recently Published Documents


TOTAL DOCUMENTS

413
(FIVE YEARS 138)

H-INDEX

37
(FIVE YEARS 8)

2022 ◽  
Vol 14 (2) ◽  
pp. 968
Author(s):  
Tuo Han ◽  
Qi Feng ◽  
Tengfei Yu ◽  
Xiaofang Zhang ◽  
Xiaomei Yang ◽  
...  

Stomatal conductance (gs), the process that governs plant carbon uptake and water loss, is fundamental to most Land Surface Models (LSMs). With global change accelerating, more attention should be paid to investigating stomatal behavior, especially in extremely arid areas. In this study, gas exchange measurements and environmental/biological variables observations during growing seasons in 2016 and 2017 were combined to investigate diurnal and seasonal characteristics of gs and the applicability of the optimal stomatal conductance model in a desert oasis vineyard. The results showed that the responses of gs to environmental factors (photosynthesis active radiation, PAR; vapor pressure deficit, VPD; and temperature, T) formed hysteresis loops in the daytime. The stomatal conductance slope, g1, a parameter in the unified stomatal optimal model, varied in different growing seasons and correlated with the soil-to-leaf hydraulic conductance (KL). These results indicated the potential bias when using a constant g1 value to simulate gs and highlighted that the water-use strategy of oasis plants might not be consistent throughout the entire growing season. Our findings further help to achieve a better understanding of stomata behavior in responding to climate change and encourage future efforts toward a more accurate parameterization of gs to improve the modeling of LSMs.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
José A. Marengo ◽  
Juan C. Jimenez ◽  
Jhan-Carlo Espinoza ◽  
Ana Paula Cunha ◽  
Luiz E. O. Aragão

AbstractSeveral large-scale drivers of both anthropogenic and natural environmental changes are interacting nonlinearly in the transition zone between eastern Amazonia and the adjacent Cerrado, considered to be another Brazilian agricultural frontier. Land-use change for agrobusiness expansion together with climate change in the transition zone between eastern Amazonia and the adjacent Cerrado may have induced a worsening of severe drought conditions over the last decade. Here we show that the largest warming and drying trends over tropical South America during the last four decades are observed to be precisely in the eastern Amazonia–Cerrado transition region, where they induce delayed wet-season and worsen severe drought conditions over the last decade. Our results evidence an increase in temperature, vapor pressure deficit, subsidence, dry-day frequency, and a decrease in precipitation, humidity, and evaporation, plus a delay in the onset of the wet season, inducing a higher risk of fire during the dry-to-wet transition season. These findings provide observational evidence of the increasing climatic pressure in this area, which is sensitive for global food security, and the need to reconcile agricultural expansion and protection of natural tropical biomes.


Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 95
Author(s):  
Noureddine El Haddad ◽  
Hasnae Choukri ◽  
Michel Edmond Ghanem ◽  
Abdelaziz Smouni ◽  
Rachid Mentag ◽  
...  

High temperature and water deficit are among the major limitations reducing lentil (Lens culinaris Medik.) yield in many growing regions. In addition, increasing atmospheric vapor pressure deficit (VPD) due to global warming causes a severe challenge by influencing the water balance of the plants, thus also affecting growth and yield. In the present study, we evaluated 20 lentil genotypes under field conditions and controlled environments with the following objectives: (i) to investigate the impact of temperature stress and combined temperature-drought stress on traits related to phenology, grain yield, nutritional quality, and canopy temperature under field conditions, and (ii) to examine the genotypic variability for limited transpiration (TRlim) trait in response to increased VPD under controlled conditions. The field experiment results revealed that high-temperature stress significantly affected all parameters compared to normal conditions. The protein content ranged from 23.4 to 31.9%, while the range of grain zinc and iron content varied from 33.1 to 64.4 and 62.3 to 99.3 mg kg−1, respectively, under normal conditions. The grain protein content, zinc and iron decreased significantly by 15, 14 and 15% under high-temperature stress, respectively. However, the impact was more severe under combined temperature-drought stress with a reduction of 53% in protein content, 18% in zinc and 20% in iron. Grain yield declined significantly by 43% in temperature stress and by 49% in the combined temperature-drought stress. The results from the controlled conditions showed a wide variation in TR among studied lentil genotypes. Nine genotypes displayed TRlim at 2.76 to 3.51 kPa, with the genotypes ILL 7833 and ILL 7835 exhibiting the lowest breakpoint. Genotypes with low breakpoints had the ability to conserve water, allowing it to be used at later stages for increased yield. Our results identified promising genotypes including ILL 7835, ILL 7814 and ILL 4605 (Bakria) that could be of great interest in breeding for high yields, protein and micronutrient contents under high-temperature and drought stress. In addition, it was found that the TRlim trait has the potential to select for increased lentil yields under field water-deficit environments.


Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 23
Author(s):  
Gisele Cristina Dotto Rubert ◽  
Vanessa de Arruda Souza ◽  
Tamíres Zimmer ◽  
Gustavo Pujol Veeck ◽  
Alecsander Mergen ◽  
...  

Energy and water exchange between the surface and the atmosphere are important drivers to Earth’s climate from local to global scale. In this study, the energy dynamic and the biophysical mechanisms that control the energy partitioning over a natural grassland pasture over the Brazilian Pampa biome are investigated using two micrometeorological sites located 300 km apart, in Southern Brazil. The latent heat flux, LE, was the main component of the energy balance in both autumn-winter (AW) and spring-summer (SS) periods. Annually, approximately 60% of the available energy is used for evapotranspiration (ET). However, the Bowen ratio presents seasonal variability greater in AW than SS. Global radiation, Rg, is the atmospheric variable controlling LE and sensible heat flux, H. Hysteresis curves in the daily cycle were observed for ET and surface conductance, Cs, regarding the environmental variables, net radiation, vapor pressure deficit, and air temperature. Among the variables analyzed in the Pampa biome, surface conductance and evapotranspiration respond more strongly to the vapor pressure deficit. The hysteresis cycles formed by ET and conductance show a substantial biophysical control in the ET process. The results obtained here allowed a comprehension of the biophysical mechanisms involved in the energy partition process in natural grassland. Therefore, this study can be used as a base for research on land-use changes in this unique ecosystem of the Pampa biome.


2021 ◽  
Vol 12 ◽  
Author(s):  
Gaia Pasqualotto ◽  
Vinicio Carraro ◽  
Eloy Suarez Huerta ◽  
Tommaso Anfodillo

A remarkable increase in vapor pressure deficit (VPD) has been recorded in the last decades in relation to global warming. Higher VPD generally leads to stomatal closure and limitations to leaf carbon uptake. Assessing tree conductance responses to VPD is a key step for modeling plant performances and productivity under future environmental conditions, especially when trees are cultivated well outside their native range as for hazelnut (Corylus spp.). Our main aim is to assess the stand-level surface canopy conductance (Gsurf) responses to VPD in hazelnut across different continents to provide a proxy for potential productivity. Tree sap flow (Fd) was measured by Thermal dissipation probes (TDP) probes (six per sites) in eight hazelnut orchards in France, Italy, Georgia, Australia, and Chile during three growing seasons since 2016, together with the main meteorological parameters. We extracted diurnal Fd to estimate the canopy conductance Gsurf.. In all the sites, the maximum Gsurf occurred at low values of VPD (on average 0.57 kPa) showing that hazelnut promptly avoids leaf dehydration and that maximum leaf gas exchange is limited at relatively low VPD (i.e., often less than 1 kPa). The sensitivity of the conductance vs. VPD (i.e., -dG/dlnVPD) resulted much lower (average m = −0.36) compared to other tree species, with little differences among sites. We identified a range of suboptimal VPD conditions for Gsurf maximization (Gsurf > 80% compared to maximum) in each site, named “VPD80,” which multiplied by the mean Gsurf might be used as a proxy for assessing the maximum gas exchange of the orchard with a specific management and site. Potential gas exchange appeared relatively constant in most of the sites except in France (much higher) and in the driest Australian site (much lower). This study assessed the sensitivity of hazelnut to VPD and proposed a simple proxy for predicting the potential gas exchange in different areas. Our results can be used for defining suitability maps based on average VPD conditions, thus facilitating correct identification of the potentially most productive sites.


Sign in / Sign up

Export Citation Format

Share Document