scholarly journals Broadening the Variability for Peanut Breeding with a Wild Species-Derived Induced Allotetraploid

Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1917
Author(s):  
Taís Suassuna ◽  
Nelson Suassuna ◽  
Kennedy Martins ◽  
Ramon Matos ◽  
Jair Heuert ◽  
...  

The use of wild species in peanut breeding provides remarkable opportunities for introducing new traits to the peanut crop and it has increased in recent years. Here, we report the morphological and agronomic, including disease resistance, variation observed in 87 Recombinant Inbred Lines (RILs) that were derived from the wild ancestors of peanut and the cultivar Runner IAC-886. These lines exhibited a wide range of variation for these traits, with transgressive segregation and novel phenotypes being observed in many lines. Quantitative Trait Loci (QTLs) for agronomic and resistance traits were detected. Six RILs with contrasting phenotypes for agronomic traits and moderate resistance to leaf spots were genotyped. All of the lines had, on average, 50% wild alleles, with at least one large wild segment and multiple interspersed alleles in all of the chromosomes. Genetic exchange between subgenomes was observed. On four lines, the top of Chr 05/15, which is tetrasomic AAAA in A. hypogaea, has been restored to its AABB state by the introgression of A. ipaënsis alleles. We identified lines with good agronomic traits while harboring genome composition and structure completely different from each other and from the cultivated peanut. The variation that is observed for the fruit type is also important for a better comprehension of the domestication process in peanut. This increase in genetic diversity has great potential benefits for the peanut breeding programs.

Author(s):  
Dongying Gao ◽  
Ana C. G. Araujo ◽  
Eliza F. M. B. Nascimento ◽  
M. Carolina Chavarro ◽  
Han Xia ◽  
...  

AbstractIntrogression of desirable traits from wild relatives plays an important role in crop improvement, as wild species have important characters such as high resistance to pests and pathogens. However, use of wild peanut relatives is challenging because almost all wild species are diploid and sexually incompatible with cultivated peanut, which is tetraploid (AABB genome type; 2n = 4x = 40). To overcome the ploidy barrier, we used 2 wild species to make a tetraploid with the same allotetraploid genome composition as cultivated peanut. Crosses were made between 2 diploid wild species, Arachis valida Krapov. and W.C. Greg. (BB genome; 2n = 2x = 20) and Arachis stenosperma Krapov. and W.C. Greg. (AA genome; 2n = 2x = 20). Cuttings from the diploid F1 AB hybrid were treated with colchicine to induce chromosome doubling thus generating an induced allotetraploid. Chromosome counts confirmed polyploidy (AABB genome; 2n = 4x = 40). We named the new allotetraploid ValSten. Plants had well-developed fertile pollen, produced abundant seed and were sexually compatible with cultivated peanut. ValSten exhibits the same high resistance to early and late leaf spot and rust as its diploid parents. Notably, we observed morphological variations, including flower width and branch angles in the earliest generation (S0) of allotetraploids. A SNP array was used to genotype 47 S0 allotetraploids. The great majority of markers showed the additive allelic state from both parents (AABB). However, some loci were AAAA or BBBB, indicating homeologous recombination. ValSten provides a new, vigorous, highly fertile, disease resistant germplasm for peanut research and improvement.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nagenahalli Dharmegowda Rathan ◽  
Deepmala Sehgal ◽  
Karthikeyan Thiyagarajan ◽  
Ravi Singh ◽  
Anju-Mahendru Singh ◽  
...  

The development of nutritionally enhanced wheat (Triticum aestivum L.) with higher levels of grain iron (Fe) and zinc (Zn) offers a sustainable solution to micronutrient deficiency among resource-poor wheat consumers. One hundred and ninety recombinant inbred lines (RILs) from ‘Kachu’ × ‘Zinc-Shakti’ cross were phenotyped for grain Fe and Zn concentrations and phenological and agronomically important traits at Ciudad Obregon, Mexico in the 2017–2018, 2018–2019, and 2019–2020 growing seasons and Diversity Arrays Technology (DArT) molecular marker data were used to determine genomic regions controlling grain micronutrients and agronomic traits. We identified seven new pleiotropic quantitative trait loci (QTL) for grain Zn and Fe on chromosomes 1B, 1D, 2B, 6A, and 7D. The stable pleiotropic QTL identified have expanded the diversity of QTL that could be used in breeding for wheat biofortification. Nine RILs with the best combination of pleiotropic QTL for Zn and Fe have been identified to be used in future crossing programs and to be screened in elite yield trials before releasing as biofortified varieties. In silico analysis revealed several candidate genes underlying QTL, including those belonging to the families of the transporters and kinases known to transport small peptides and minerals (thus assisting mineral uptake) and catalyzing phosphorylation processes, respectively.


2021 ◽  
Vol 12 ◽  
Author(s):  
Francisco J. Canales ◽  
Gracia Montilla-Bascón ◽  
Luis M. Gallego-Sánchez ◽  
Fernando Flores ◽  
Nicolas Rispail ◽  
...  

Oat, Avena sativa, is an important crop traditionally grown in cool-temperate regions. However, its cultivated area in the Mediterranean rim steadily increased during the last 20 years due to its good adaptation to a wide range of soils. Nevertheless, under Mediterranean cultivation conditions, oats have to face high temperatures and drought episodes that reduce its yield as compared with northern regions. Therefore, oat crop needs to be improved for adaptation to Mediterranean environments. In this work, we investigated the influence of climatic and edaphic variables on a collection of 709 Mediterranean landraces and cultivars growing under Mediterranean conditions. We performed genotype–environment interaction analysis using heritability-adjusted genotype plus genotype–environment biplot analyses to determine the best performing accessions. Further, their local adaptation to different environmental variables and the partial contribution of climate and edaphic factors to the different agronomic traits was determined through canonical correspondence, redundancy analysis, and variation partitioning. Here, we show that northern bred elite cultivars were not among the best performing accessions in Mediterranean environments, with several landraces outyielding these. While all the best performing cultivars had early flowering, this was not the case for all the best performing landraces, which showed different patterns of adaption to Mediterranean agroclimatic conditions. Thus, higher yielding landraces showed adaptation to moderate to low levels of rain during pre- and post-flowering periods and moderate to high temperature and radiation during post-flowering period. This analysis also highlights landraces adapted to more extreme environmental conditions. The study allowed the selection of oat genotypes adapted to different climate and edaphic factors, reducing undesired effect of environmental variables on agronomic traits and highlights the usefulness of variation partitioning for selecting genotypes adapted to specific climate and edaphic conditions.


2008 ◽  
Vol 35 (2) ◽  
pp. 81-85 ◽  
Author(s):  
S. P. Tallury ◽  
H. E. Pattee ◽  
T. G. Isleib ◽  
H. T. Stalker

Abstract Several diploid wild species of the genus Arachis L. have been used as sources of resistance to common diseases of cultivated peanut (Arachis hypogaea L.). Because flavor is among the most important quality attributes for commercial acceptance of roasted peanuts, sensory attributes of interspecific hybrid derived breeding lines were evaluated to determine if transfer of disease resistance from wild species is associated with concomitant changes in flavor. Sixteen interspecific hybrid derivatives with five diploid species in their ancestries and the commercial flavor standard, NC 7 were evaluated for sensory quality. Significant variation among entries was found for the roasted peanut, sweet, and bitter sensory attributes, but not for the overall contrast between NC 7 and the wild species-derived breeding lines. The variation was either between two groups of wild species-derived breeding lines or within one or both groups. Introduction of disease and pest resistance traits from Arachis species did not result in degradation or improvement of the flavor profile. This suggests that flavor of wild species-derived germplasm will not prevent its use either as parents in peanut breeding programs or as cultivars.


Weed Science ◽  
2019 ◽  
Vol 67 (05) ◽  
pp. 504-509
Author(s):  
Wenwen Liu ◽  
Kevin E. Kenworthy ◽  
Gregory E. MacDonald ◽  
J. Bryan Unruh ◽  
Laurie E. Trenholm ◽  
...  

AbstractZoysia germplasm exhibit different levels of sensitivity to fluazifop-P-butyl, but the genetic factors responsible for such differences are unknown. Segregation patterns of the fluazifop-P-butyl tolerance trait were studied under greenhouse conditions. In total, 244 F1 lines were generated from multiple crosses between the tolerant line 5337-2 (non–target site tolerance) and three more-sensitive lines (123, 252, and 5330-23). Progeny segregation showed that fluazifop-P-butyl tolerance within zoysiagrass (Zoysia spp.) is expressed as a quantitative trait with a wide range of intermediate phenotypes between parental phenotypes. Transgressive segregation was extensive and largely favored susceptibility in most families, but was especially evident for 5337-2 × 123 and 5337-2 × 5330-23. The segregation patterns for biomass reduction and percent injury were different within reciprocal crosses and among three different family crosses. Reciprocal effects were observed in growth reduction for 5337-2 × 5330-23, in percent injury at 3 wk after the treatment (WAT), and for 5337-2 × 252 at 6 WAT. This indicated that fluazifop-P-butyl tolerance was not completely controlled by nuclear genetic factors in 5337-2 and maternal/cytoplasmic inheritance was also partially responsible. These results suggested that fluazifop-P-butyl tolerance may be attributed to multiple genetic mechanisms, which could present a challenge for future breeding efforts because of the difficulty of fixing multiple traits within a breeding population.


2019 ◽  
Vol 196 ◽  
pp. 00010 ◽  
Author(s):  
Igor Anufriev ◽  
Evgeniy Shadrin ◽  
Evgeniy Kopyev

A promising method for spraying liquid hydrocarbons by a high-speed jet of superheated steam was studied experimentally. Information on the disperse composition and structure of the gas-droplet flow during the spraying of used transmission automotive oil was obtained using the method of shadow photography. Size distributions of fuel droplets were obtained in a wide range of operating parameters (flow rate and temperature of steam, fuel consumption).


2018 ◽  
Vol 65 (3-4) ◽  
pp. 129-146 ◽  
Author(s):  
Tamar Krugman ◽  
Eviatar Nevo ◽  
Alex Beharav ◽  
Hanan Sela ◽  
Tzion Fahima

The Institute of Evolution Wild Cereal Gene Bank (ICGB) at the University of Haifa, Israel, harbors extensive collections of wild emmer wheat (WEW), Triticum dicoccoides, and wild barley (WB), Hordeum spontaneum, the primary progenitors of wheat and barley, respectively. The ICGB also includes minor collections of 10 species of Aegilops, wild oat (Avena barbata), and Brachypodium stacei and B. hybridum (previously distachyon). Here, we describe the WEW and WB collections, explain sampling strategies, and introduce related studies. Natural populations were sampled across Israel along aridity gradients, occurring from north to south and from west to east, and in local microsites with variable (or contrasting) ecological factors. The collection sites varied greatly in terms of climatic (rainfall, temperature and humidity), edaphic (soil types), and topography (altitude, slope) variables. Thus, the ICGB collections represent wild cereals adapted to a wide range of habitats and eco-geographical conditions. We have collected and preserved these unique gene pools since mid-70th, and further used them for theoretical and applied studies in population genetics, evolution, domestication, adaptation to local and regional habitats, and coping mechanisms for a plethora of biotic and abiotic stresses. Our studies revealed that WEW and WB populations from Israel harbor high adaptive genetic diversity that can serve as a reservoir of beneficial alleles to improve important agronomic traits such as disease resistance, drought tolerance and improved grain protein content. These mostly untapped genetic resources could contribute to increasing world food production for the constantly rising human population.


2011 ◽  
Vol 5 (2) ◽  
pp. 135-146 ◽  
Author(s):  
P. Haddadi ◽  
B. Yazdi-samadi ◽  
M. R. Naghavi ◽  
A. Kalantari ◽  
P. Maury ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document