scholarly journals A Portable Fuzzy Driver Drowsiness Estimation System

Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4093
Author(s):  
Alimed Celecia ◽  
Karla Figueiredo ◽  
Marley Vellasco ◽  
René González

The adequate automatic detection of driver fatigue is a very valuable approach for the prevention of traffic accidents. Devices that can determine drowsiness conditions accurately must inherently be portable, adaptable to different vehicles and drivers, and robust to conditions such as illumination changes or visual occlusion. With the advent of a new generation of computationally powerful embedded systems such as the Raspberry Pi, a new category of real-time and low-cost portable drowsiness detection systems could become standard tools. Usually, the proposed solutions using this platform are limited to the definition of thresholds for some defined drowsiness indicator or the application of computationally expensive classification models that limits their use in real-time. In this research, we propose the development of a new portable, low-cost, accurate, and robust drowsiness recognition device. The proposed device combines complementary drowsiness measures derived from a temporal window of eyes (PERCLOS, ECD) and mouth (AOT) states through a fuzzy inference system deployed in a Raspberry Pi with the capability of real-time response. The system provides three degrees of drowsiness (Low-Normal State, Medium-Drowsy State, and High-Severe Drowsiness State), and was assessed in terms of its computational performance and efficiency, resulting in a significant accuracy of 95.5% in state recognition that demonstrates the feasibility of the approach.

Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1548
Author(s):  
Marjana Čubranić-Dobrodolac ◽  
Libor Švadlenka ◽  
Svetlana Čičević ◽  
Aleksandar Trifunović ◽  
Momčilo Dobrodolac

A constantly increasing number of deaths on roads forces analysts to search for models that predict the driver’s propensity for road traffic accidents (RTAs). This paper aims to examine a relationship between the speed and space assessment capabilities of drivers in terms of their association with the occurrence of RTAs. The method used for this purpose is based on the implementation of the interval Type-2 Fuzzy Inference System (T2FIS). The inputs to the first T2FIS relate to the speed assessment capabilities of drivers. These capabilities were measured in the experiment with 178 young drivers, with test speeds of 30, 50, and 70 km/h. The participants assessed the aforementioned speed values from four different observation positions in the driving simulator. On the other hand, the inputs of the second T2FIS are space assessment capabilities. The same group of drivers took two types of space assessment tests—2D and 3D. The third considered T2FIS sublimates of all previously mentioned inputs in one model. The output in all three T2FIS structures is the number of RTAs experienced by a driver. By testing three proposed T2FISs on the empirical data, the result of the research indicates that the space assessment characteristics better explain participation in RTAs compared to the speed assessment capabilities. The results obtained are further confirmed by implementing a multiple regression analysis.


Author(s):  
Zahra Sadeghtabaghi ◽  
Mohsen Talebkeikhah ◽  
Ahmad Reza Rabbani

AbstractVitrinite reflectance (VR) is considered the most used maturity indicator of source rocks. Although vitrinite reflectance is an acceptable parameter for maturity and is widely used, it is sometimes difficult to measure. Furthermore, Rock-Eval pyrolysis is a current technique for geochemical investigations and evaluating source rock by their quality and quantity of organic matter, which provide low cost, quick, and valid information. Predicting vitrinite reflectance by using a quick and straightforward method like Rock-Eval pyrolysis results in determining accurate and reliable values of VR with consuming low cost and time. Previous studies used empirical equations for vitrinite reflectance prediction by the Tmax data, which was accompanied by poor results. Therefore, finding a way for precise vitrinite reflectance prediction by Rock-Eval data seems useful. For this aim, vitrinite reflectance values are predicted by 15 distinct machine learning models of the decision tree, random forest, support vector machine, group method of data handling, radial basis function, multilayer perceptron, adaptive neuro-fuzzy inference system, and multilayer perceptron and adaptive neuro-fuzzy inference system, which are coupled with evolutionary optimization methods such as grasshopper optimization algorithm, bat algorithm, particle swarm optimization, and genetic algorithm, with four inputs of Rock-Eval pyrolysis parameters of Tmax, S1/TOC, HI, and depth for the first time. Statistical evaluations indicate that the decision tree is the most precise model for VR prediction, which can estimate vitrinite reflectance precisely. The comparison between the decision tree and previous proposed empirical equations indicates that the machine learning method performs much more accurately.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 6510-6518 ◽  
Author(s):  
Shengyou Xu ◽  
Xin Yang ◽  
Minyou Chen ◽  
Wei Lai ◽  
Yueyue Wang ◽  
...  

2014 ◽  
Author(s):  
Shimi Sudha Letha ◽  
Tilak Thakur ◽  
Jagdish Kumar ◽  
Dnyaneshwar Karanjkar ◽  
Santanu Chatterji

This paper presents an Artificial Intelligent based Maximum Power Point Tracking (MPPT) of a photo-voltaic system implementation using dSPACE 1104. The paper also proposes a novel Adaptive Neuro-Fuzzy Inference System (ANFIS) / Constant Voltage Tracker (CVT) for a photovoltaic (PV) powered multilevel inverter which requires a fixed constant dc voltage at its input. The MPPT algorithms viz. perturb and observe, incremental conductance, neural network, ANFIS and ANFIS/CVT have been designed and implemented on laboratory prototype. The modeling of various MPPT algorithms have been done on MATLAB/SIMULINK platform. Real time simulations have been carried out using dSPACE R&D controller board and CONTROLDESK software. The performance comparisons of various MPPT techniques applied to stand-alone PV system with resistive load have been presented for varying solar radiation conditions. The authors hope that the comparative analysis presented in this work will be helpful for further research.


Sign in / Sign up

Export Citation Format

Share Document