wheat species
Recently Published Documents


TOTAL DOCUMENTS

254
(FIVE YEARS 75)

H-INDEX

27
(FIVE YEARS 3)

2022 ◽  
Vol 12 ◽  
Author(s):  
Yulduzkhon Abdullaeva ◽  
Stefan Ratering ◽  
Binoy Ambika Manirajan ◽  
David Rosado-Porto ◽  
Sylvia Schnell ◽  
...  

The seed-transmitted microorganisms and the microbiome of the soil in which the plant grows are major drivers of the rhizosphere microbiome, a crucial component of the plant holobiont. The seed-borne microbiome can be even coevolved with the host plant as a result of adaptation and vertical transmission over generations. The reduced genome diversity and crossing events during domestication might have influenced plant traits that are important for root colonization by seed-borne microbes and also rhizosphere recruitment of microbes from the bulk soil. However, the impact of the breeding on seed-transmitted microbiome composition and the plant ability of microbiome selection from the soil remain unknown. Here, we analyzed both endorhiza and rhizosphere microbiome of two couples of genetically related wild and cultivated wheat species (Aegilops tauschii/Triticum aestivum and T. dicoccoides/T. durum) grown in three locations, using 16S rRNA gene and ITS2 metabarcoding, to assess the relative contribution of seed-borne and soil-derived microbes to the assemblage of the rhizosphere microbiome. We found that more bacterial and fungal ASVs are transmitted from seed to the endosphere of all species compared with the rhizosphere, and these transmitted ASVs were species-specific regardless of location. Only in one location, more microbial seed transmission occurred also in the rhizosphere of A. tauschii compared with other species. Concerning soil-derived microbiome, the most distinct microbial genera occurred in the rhizosphere of A. tauschii compared with other species in all locations. The rhizosphere of genetically connected wheat species was enriched with similar taxa, differently between locations. Our results demonstrate that host plant criteria for soil bank’s and seed-originated microbiome recruitment depend on both plants’ genotype and availability of microorganisms in a particular environment. This study also provides indications of coevolution between the host plant and its associated microbiome resulting from the vertical transmission of seed-originated taxa.


2022 ◽  
Author(s):  
Sancar Bulut

Abstract This research was carried out to determine the effects of agronomic practices on the mineral composition of organically-grown wheat species. In terms of all nutrients evaluated, the mineral content of wheat showed significant differences according to crop years, varieties, weed control methods and fertilizer sources. As the average of all factors, the Cu, Fe, Mn, Se, Zn, Cd, Co, Cr, Ni and Pb contents of the ground wheat grain were; 3.93, 42.8, 79.6, 0.549, 11.34, 0.012, 0.140, 0.194, 3.71 and 0.269 mg / kg, respectively. According to the wheat varieties, the Kırik was superior in terms of Cu, Fe, Se, Zn, Co and Cr, and the Dogu-88 was superior in terms of Mn, Cd, and Ni. The effect of weed control methods on mineral content was variable. According to fertilizer sources, the highest mineral content was obtained from the control plots without fertilizer treatments. The lowest mineral contents were obtained from chemical fertilization, cattle manure and organic fertilizer applications. There was no significant increase in the mineral content of wheat with organic fertilization, however, organic agriculture still preserves its place in terms of healthy food. As a result, it has been determined that the values obtained for all mineral elements were not at a level that pose a risk on the environment, human and animal health according to WHO.


2022 ◽  
Vol 12 ◽  
Author(s):  
Cécile Gruet ◽  
Daniel Muller ◽  
Yvan Moënne-Loccoz

Wheat, one of the major crops in the world, has had a complex history that includes genomic hybridizations between Triticum and Aegilops species and several domestication events, which resulted in various wild and domesticated species (especially Triticum aestivum and Triticum durum), many of them still existing today. The large body of information available on wheat-microbe interactions, however, was mostly obtained without considering the importance of wheat evolutionary history and its consequences for wheat microbial ecology. This review addresses our current understanding of the microbiome of wheat root and rhizosphere in light of the information available on pre- and post-domestication wheat history, including differences between wild and domesticated wheats, ancient and modern types of cultivars as well as individual cultivars within a given wheat species. This analysis highlighted two major trends. First, most data deal with the taxonomic diversity rather than the microbial functioning of root-associated wheat microbiota, with so far a bias toward bacteria and mycorrhizal fungi that will progressively attenuate thanks to the inclusion of markers encompassing other micro-eukaryotes and archaea. Second, the comparison of wheat genotypes has mostly focused on the comparison of T. aestivum cultivars, sometimes with little consideration for their particular genetic and physiological traits. It is expected that the development of current sequencing technologies will enable to revisit the diversity of the wheat microbiome. This will provide a renewed opportunity to better understand the significance of wheat evolutionary history, and also to obtain the baseline information needed to develop microbiome-based breeding strategies for sustainable wheat farming.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 2008
Author(s):  
Larisa Rebeca Șerban ◽  
Adriana Păucean ◽  
Simona Maria Man ◽  
Maria Simona Chiş ◽  
Vlad Mureşan

In recent years, the attention of farmers, bakers and consumers towards ancient wheat species has been increasing. Low demands of pedo-climatic growth factors, the suitability for organic cultivation along with their high nutritional quality and their content in pro-health compounds make them extremely attractive for bakers and modern consumers, equally. On the other hand, in recent years, sourdough has gained attention due to its ability to produce new functionally active molecules with higher bioaccessibility and thus to produce bread with enhanced nutritional quality. This paper highlights the relevant nutritional profile of einkorn, spelt, emmer and Khorasan which could lead to bread with improved textural, sensorial, microbial and nutritional characteristics through sourdough fermentation. The ancient wheat species could be used as promising substitutes for common wheat flour for the design of innovative types of bread, even for special needs.


2021 ◽  
Author(s):  
Laxman Adhikari ◽  
John Raupp ◽  
Shuangye Wu ◽  
Duane Wilson ◽  
Byron Evers ◽  
...  

The A-genome diploid wheats represent the earliest domesticated and cultivated wheat species in the Fertile Crescent and the donor of the wheat A sub-genome. The A-genome species encompass the cultivated einkorn (Triticum. monococcum L. subsp. monococcum), wild einkorn (T. monococcum L. subsp. aegilopoides (Link) Thell.) and T. urartu. We evaluated the collection of 930 accessions in the Wheat Genetics Resource Center (WGRC), using genotyping-by-sequencing (GBS) and identified 13,089 curated SNPs. Genomic analysis detected misclassified and duplicated accessions with most duplicates originated from the same or a nearby locations. About 56% (n = 520) of the WGRC A-genome species collections were duplicates supporting the need for genomic characterization for effective curation and maintenance of these collections. Population structure analysis confirmed the morphology-based classifications of the accessions and reflected the species geographic distributions. We also showed that the T. urartu as the closest A-genome diploid to wheat through phylogenetic analysis. Population analysis within the wild einkorn group showed three genetically distinct clusters, which corresponded with wild einkorn races α, β, and γ described previously. The T. monococcum genome-wide FST scan identified candidate genomic regions harboring domestication selection signature (Btr1) on the short arm of chromosome 3Am at ~ 70 Mb. We established A-genome core set (79 accessions) based on allelic diversity, geographical distribution, and available phenotypic data. The individual species core set maintained at least 80% of allelic variants in the A-genome collection and constitute a valuable genetic resource to improve wheat and domesticated einkorn in breeding programs.


Sign in / Sign up

Export Citation Format

Share Document