aluminum wire
Recently Published Documents


TOTAL DOCUMENTS

314
(FIVE YEARS 31)

H-INDEX

22
(FIVE YEARS 1)

2022 ◽  
Vol 26 (1) ◽  
pp. 87-94
Author(s):  
Mohammed Abdulateef Ahmed ◽  

The study of the duration of mechanical resistance to static tensile stress (withstand time) for an aluminum wire that being suffers from the corrosion effect stimulated by stray currents at different temperatures. Test device was designed and produced locally "in advance" in accordance with the specification (ASTM G103 - 97) to create static tensile stress of (1 N) on an aluminum wire of type ASTM (B231/B231M) with particular dimensions and utilized in the transmission of electrical energy, and when the wire is surrounded by a corrosive environment (NaCl solution) (3.5 % NaCl) at three different temperatures (25, 50, and 75 ° C) without any external electrical current causing corrosion; this symbolizes stray currents. Then compare the findings of that example to the results of the same wire's withstand time in the presence of an external electrical current generated by corrosion of type (D.C) by (5V & 3A). Following that, the resulting diagrams were analyzed, and it was discovered that the wire resistivity time (without the existence of stray currents and at a temperature of 25 ° C) completed (17 days), which is the longest duration of endure, and the lowest time of resistivity or resistance period (in the existence of an external electric current) is (18 hr.).Impact of (stray currents) at (75 ° C), and this is an indicator of the stray currents with corrosive environment temperatures on the resistance period (withstand duration) in the existence of static stress. The total stimulation increase is 1.9% between corrosion at 75°C and 25°C.


2021 ◽  
Vol 57 (9) ◽  
pp. 1-7
Author(s):  
Takumi Maezawa ◽  
Hao Zhou ◽  
Mitsuhide Sato ◽  
Yinggang Bu ◽  
Tsutomu Mizuno

2021 ◽  
Vol 123 ◽  
pp. 114185
Author(s):  
Nobuyuki Shishido ◽  
Yoshiki Setoguchi ◽  
Yuto Kumagai ◽  
Masaaki Koganemaru ◽  
Toru Ikeda ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4133
Author(s):  
Xueyan Xu ◽  
Zhijin Yu ◽  
Yang Li ◽  
Weifeng Wang ◽  
Lan Xu

To clarify the understanding and analysis of arc molten marks in electrical faults of aluminum alloy wires, this paper simulates overcurrent faults of aluminum alloy wires at currents of 128 A–224 A and uses thermogravimetry-differential scanning calorimetry (TG-DSC), optical microscopy (OM), scanning electron microscope (SEM) and X-ray energy spectroscopy (EDS) to characterize the effects of current on the microstructure of arc beads. The results show that there are small and large amounts of Al-Si and Al-Fe binary phases in the metallographic structure of the aluminum alloy wires at the rated current, the grains are fine, and there are no significant grain boundaries. After an overcurrent fault occurs in the wires, a high-temperature arc causes the second phase in the aluminum alloy to disappear, a cellular dendritic metallographic structure appears, the grain boundaries become more well-defined, and composition segregation occurs at the grain boundaries. Using the Image-Pro-Plus software to quantify the grain characteristics, the average grain size is found to gradually decrease as the current increases. In addition, by comparing and analyzing the characteristics of arc beads in aluminum wires and aluminum alloy wires under the same conditions, alloying elements are found to have a refining effect on the grain boundaries, and there are coarse precipitates at the grain boundaries in the aluminum wire arc beads.


2021 ◽  
Vol 263 ◽  
pp. 113695
Author(s):  
A.A. Megahed ◽  
F. Abd El-Wadoud ◽  
A. Wagih ◽  
A.M. Kabeel

2021 ◽  
Vol 7 (1) ◽  
pp. 21-30
Author(s):  
Izatullo N. Ganiev ◽  
Firdavs A. Aliev ◽  
Haydar O. Odinazoda ◽  
Ahror M. Safarov ◽  
Rakhmazhon Usmonov

The effect of impurities on the electrical conductivity of aluminum has been studied in detail. The electrical conductivity of aluminum is 65.45% of that of copper. The tensile strength of aluminum wire is 150–170 MPa which, at equal conductivity, is about 65% of the strength of copper wire. This strength of aluminum wire is sufficient for bearing the wire’s own weight but may be too low in case of snow, ice or wind overloads. One way to improve the strength of aluminum wire is to use aluminum alloys having higher strength combined with sufficiently high electrical conductivity, e.g. the E-AlMgSi alloy (Aldrey). The key strengthening agent of the E-AlMgSi alloy (Aldrey) is the Mg2Si phase which imparts high mechanical strength to aluminum. In this work we present experimental data on the kinetics of high-temperature oxidation and electrochemical corrosion of indium doped E-AlMgSi aluminum conductor alloy (Aldrey). Thermal gravimetric study has shown that indium doping and high temperature exposure increase the oxidation rate of E-AlMgSi alloy (Aldrey), with the apparent alloy oxidation activation energy decreasing from 120.5 to 91.8 kJ/mole. Alloy oxidation rate data determined using a potentiostatic technique in NaCl electrolyte media have shown that the corrosion resistance of the indium doped alloy is 20–30% superior to that of the initial alloy. With an increase in NaCl electrolyte concentration the electrochemical potentials of the alloys decrease whereas the corrosion rate increases regardless of alloy composition.


Sign in / Sign up

Export Citation Format

Share Document