major groove
Recently Published Documents


TOTAL DOCUMENTS

293
(FIVE YEARS 31)

H-INDEX

43
(FIVE YEARS 4)

2022 ◽  
Vol 8 ◽  
Author(s):  
Agnieszka Ruszkowska ◽  
Ya Ying Zheng ◽  
Song Mao ◽  
Milosz Ruszkowski ◽  
Jia Sheng

G•U wobble base pair frequently occurs in RNA structures. The unique chemical, thermodynamic, and structural properties of the G•U pair are widely exploited in RNA biology. In several RNA molecules, the G•U pair plays key roles in folding, ribozyme catalysis, and interactions with proteins. G•U may occur as a single pair or in tandem motifs with different geometries, electrostatics, and thermodynamics, further extending its biological functions. The metal binding affinity, which is essential for RNA folding, catalysis, and other interactions, differs with respect to the tandem motif type due to the different electrostatic potentials of the major grooves. In this work, we present the crystal structure of an RNA 8-mer duplex r[UCGUGCGA]2, providing detailed structural insights into the tandem motif I (5′UG/3′GU) complexed with Ba2+ cation. We compare the electrostatic potential of the presented motif I major groove with previously published structures of tandem motifs I, II (5′GU/3′UG), and III (5′GG/3′UU). A local patch of a strongly negative electrostatic potential in the major groove of the presented structure forms the metal binding site with the contributions of three oxygen atoms from the tandem. These results give us a better understanding of the G•U tandem motif I as a divalent metal binder, a feature essential for RNA functions.


2021 ◽  
Author(s):  
Mohamed Sobeh ◽  
Akio kitao

The dissociation process of the DNA binding domain of p53 (p53-DBD) from a DNA duplex that contains the consensus sequence, which is the specific target of p53-DBD, was investigated by a combination of dissociation parallel cascade selection molecular dynamics (dPaCS-MD) and the Markov state model (MSM). Based on an all-atom model including explicit solvent, we first simulated the p53-DBD dissociation processes by 75 trials of dPaCS-MD, which required an average simulation time of 11.2 ± 2.2 ns per trial. By setting the axis of the DNA duplex as the Z-axis and the binding side of p53-DBD on DNA as the + side of the X-axis, we found that dissociations took place along the +X and −Y directions (−Y directions) in 93% of the cases, while 7% of the cases moved along +X and +Y directions (+Y directions). Toward the −Y directions, p53-DBD dissociated first from the major groove and then detached from the minor groove, while unbinding from the minor groove occurred first in dissociations along the +Y directions. Analysis of the free energy landscape by MSM showed that loss of the minor groove interaction with p53-DBD toward the +Y directions incurred a relatively high energy cost (1.1 kcal/mol) upon a critical transition, whereas major groove detachment more frequently occurred with lower free energy costs. The standard binding free energy calculated from the free energy landscape was −10.9 ± 0.4 kcal/mol, which agrees with an experimental value of –11.1 kcal/mol. These results indicate that the dPaCS-MD/MSM combination can be a powerful tool to investigate dissociation mechanisms of two large molecules. Minor groove binding is mainly stabilized by R248, identified as the most important residue that tightly binds deep inside the minor groove. Analysis of the p53 key residues for DNA binding indicates high correlations with cancer-related mutations, confirming that impairment of the interactions between p53-DBD and DNA can be frequently related to cancer.


Author(s):  
Wellington Alves de Barros ◽  
Camila da Silva Nunes ◽  
Juliana Alves da Costa Ribeiro ◽  
Igor José dos Santos Nascimento ◽  
Isis Martins Figueiredo ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4132
Author(s):  
Adam J. Buric ◽  
Jonathan Dickerhoff ◽  
Danzhou Yang

This review is dedicated to Professor William A. Denny’s discovery of XR5944 (also known as MLN944). XR5944 is a DNA-targeted agent with exceptionally potent antitumor activity and a novel DNA binding mode, bis-intercalation and major groove binding, as well as a novel mechanism of action, transcription inhibition. This novel anticancer compound represents a remarkable accomplishment resulting from two decades of drug discovery by Professor Denny and coworkers. Here, we review our work on the structural study of the DNA binding mode of XR5944 and mechanistic study of XR5944 action.


2021 ◽  
Author(s):  
Moataz Dowaidar

A feasible alternative to state-of-the-art enzymatic nucleases was created by regulating the cleavage activity of metal complexes using (covalent or non-covalent) homing agents. Targeted AMNs, unlike enzymatic nucleases, break DNA by an oxidative mechanism and can therefore permanently knock off genes. Compared to larger enzymatic nucleases, the modest size of the metal complex may aid cellular transfection. Furthermore, the painstaking construction of the sequence-specific probe permits a metal complex to be directed to dsDNA's minor or major groove. To direct the chemical reactivity of several small-molecule compounds to dsDNA's minor groove, covalently bonded polyamide samples were used. PNA and DNA were also used to construct antisense and antigen hybrids, with Watson–Crick or Hoogsteen base pairing with major groove nucleobases giving sequence recognition. Click chemistry created chimeric AMN-TFOs with desirable focused effects and negligible off-target cleavage. Clip-Phen-modified TFOs, 230 polypyridyl-modified TFOs, 232 and intercalating phenanthrene-modified TFOs are three contemporary instances of copper AMN–TFOs. All three systems have distinct advantages in maintaining the desired 2:1 phenthroline/copper ratio for DNA cleavage (clip-Phen TFOs), caging the copper center and facilitating efficient ROS-mediated strand scission (polypyridyl-modified TFO) and improving triplex stability (polypyridyl-modified TFO) (phenanthrene-TFOs). Cerium (IV)/EDTA complexes, recently shown to bind and hydrolytically cleave ssDNA/dsDNA junctions and used in conjunction with PNA to successfully introduce genome changes in vitro and in vivo, are another important class of targeted chemical nucleases. The chemical reactivity and wide flexibility of metal complex design, combined with their coupling to sequence specific samples for directed applications, show that these compounds have a wide range of untapped applications in biological fields such as chemotherapy, protein engineering, DNA footprinting, and gene editing. Parallel advancements in cell and tissue targeting will be essential to maximise their therapeutic potential, either by using specific ligands or creating new targeting modalities.


2021 ◽  
Author(s):  
Utz Fischer ◽  
Clemens Grimm ◽  
Julia Bartuli ◽  
Bettina Böttcher ◽  
Aladar Szalay

Abstract Poxviruses express their genes in the cytoplasm of infected cells using a virus-encoded multi-subunit polymerase (vRNAP) and unique transcription factors. We present cryo-EM structures that uncover the complete transcription initiation of the poxvirus vaccinia. In the pre-initiation complex, the heterodimeric early transcription factor VETFs/l adopts an arc-like shape spanning the polymerase cleft and anchoring upstream and downstream promoter elements. VETFI emerges as a TBP-like protein that inserts asymmetrically into the DNA major groove, triggers DNA melting, ensures promoter recognition and enforces transcription directionality. The helicase VETFs fosters promoter melting and the phospho-peptide domain (PPD) of vRNAP subunit Rpo30 enables transcription initiation. An unprecedented upstream promoter scrunching mechanism assisted by the helicase NPH-I likely fosters promoter escape and transition into elongation. Our structures shed light on unique mechanisms of poxviral gene expression and aid the understanding of thus far unexplained universal principles in transcription.


2021 ◽  
pp. 104836
Author(s):  
Azzurra Stefanucci ◽  
Jussara Amato ◽  
Diego Brancaccio ◽  
Bruno Pagano ◽  
Antonio Randazzo ◽  
...  
Keyword(s):  

2021 ◽  
Vol 118 (7) ◽  
pp. e2020452118
Author(s):  
Hisashi Ishida ◽  
Hidetoshi Kono

Torsional stress has a significant impact on the structure and stability of the nucleosome. RNA polymerase imposes torsional stress on the DNA in chromatin and unwraps the DNA from the nucleosome to access the genetic information encoded in the DNA. To understand how the torsional stress affects the stability of the nucleosome, we examined the unwrapping of two half superhelical turns of nucleosomal DNA from either end of the DNA under torsional stress with all-atom molecular dynamics simulations. The free energies for unwrapping the DNA indicate that positive stress that overtwists DNA facilitates a large-scale asymmetric unwrapping of the DNA without a large extension of the DNA. During the unwrapping, one end of the DNA was dissociated from H3 and H2A-H2B, while the other end of the DNA stably remained wrapped. The detailed analysis indicates that this asymmetric dissociation is facilitated by the geometry and bendability of the DNA under positive stress. The geometry stabilized the interaction between the major groove of the twisted DNA and the H3 αN-helix, and the straightened DNA destabilized the interaction with H2A-H2B. Under negative stress, the DNA became more bendable and flexible, which facilitated the binding of the unwrapped DNA to the octamer in a stable state. Consequently, we conclude that the torsional stress has a significant impact on the affinity of the DNA and the octamer through the inherent nature of the DNA and can change the accessibility of regulatory proteins.


Science ◽  
2021 ◽  
pp. eabe6523
Author(s):  
Seyed-Fakhreddin Torabi ◽  
Anand T. Vaidya ◽  
Kazimierz T. Tycowski ◽  
Suzanne J. DeGregorio ◽  
Jimin Wang ◽  
...  

Poly(A) tail addition to the 3ʹ end of a wide range of RNAs is a highly conserved modification that plays a central role in cellular RNA function. Elements for nuclear expression (ENEs) are cis-acting RNA elements that stabilize poly(A) tails by sequestering them in RNA triplex structures. A 2.89-Å resolution crystal structure of a double ENE from a rice hAT transposon mRNA complexed with poly(A)28 reveals multiple modes of interaction with poly(A), including major-groove triple helices, extended minor-groove interactions with RNA double helices, a quintuple-base motif that transitions poly(A) from minor-groove associations to major-groove triple helices, and a poly(A) 3ʹ-end binding pocket. Our findings both expand the repertoire of motifs involved in long-range RNA interactions and provide insights into how polyadenylation can protect an RNA’s extreme 3ʹ end.


Sign in / Sign up

Export Citation Format

Share Document