bipolar membrane
Recently Published Documents


TOTAL DOCUMENTS

475
(FIVE YEARS 151)

H-INDEX

41
(FIVE YEARS 7)

Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 83
Author(s):  
Leyla Gazigil ◽  
Eren Er ◽  
O. Erdem Kestioğlu ◽  
Taner Yonar

In this study, it is aimed to investigate the potential of electrodialysis bipolar membrane (EDBM) systems for the recovery of the concentrate originating from an organized industrial estate (OIE) wastewater treatment system with reverse osmosis (RO). Acids and bases were obtained from a pilot-scale treatment plant as a result of the research. Furthermore, the sustainability and affordability of acids and bases obtained by EDBM systems were investigated. Six cycles were carried out in continuous-flow mode with the EDBM system as batch cycles in the disposal of the concentrate and the production of acids and bases with the EDBM system. For each cycle, the EDBM system was operated for 66, 48, 66, and 80 min, respectively, and the last two cycles were operated for a total of 165 min (70 + 90) with 5 min of waiting. In the EDBM system, a working method was determined such that the cycle flow rate was 180 L/hour, energy to be given to the system was 25 V, and the working pressure was in the range of 0.8–2.5 bar. In the six cycles with the EDBM system, the concentrate, acid and base, conductivity, pH, and pressure increase values were investigated depending on time. Throughout all these studies, the cycles were continued over the products formed in the acid and base chamber. As a result of all the cycles, acid (HCl) production at a level of 1.44% and base (NaOH) production at a level of 2% were obtained.


2022 ◽  
pp. 134595
Author(s):  
Feng Shi ◽  
Jia-nan Gu ◽  
Diwen Ying ◽  
Kan Li ◽  
Naiqiang Yan ◽  
...  

2021 ◽  
Author(s):  
Ireneusz Miesiac ◽  
Beata Rukowicz

AbstractThe traditional view of the conductivity of electrolytes is based on the mobility of ions in an electric field. A new concept of water conductivity introduces an electron–hole mechanism known from semiconductor theory. The electrolyte ions in the hydrogen bond network of water imitate the structure of a doped silicon lattice. The source of the current carriers is the electrode reaction generating H+ and OH− ions. The continuity of current flow is provided through the electron–hole mechanism, and the movement of electrolyte ions is only a side process. Bipolar membrane in the semiconductor approach is an electrochemical diode forward biased. Generation of large amounts of H+ and OH− has to be considered as a result of current flow and does not require any increase in the water dissociation rate. Bipolar membranes are essential in electrodialysis stacks for the recovery of acids and bases by salt splitting. Graphic Abstract


2021 ◽  
pp. 120213
Author(s):  
Zhiwei Zhou ◽  
Yuqing Lin ◽  
Yan Jin ◽  
Kecheng Guan ◽  
Hideto Matsuyama ◽  
...  

Author(s):  
Bhuvanesh Eswaraswamy ◽  
Priyabrata Mandal ◽  
Priya Goel ◽  
Sujay Chattopadhyay

Author(s):  
Olga A. Kozaderova ◽  
Ksenia B. Kim ◽  
Petr E. Belousov ◽  
Anna V. Timkova ◽  
Sabukhi I. Niftaliev

The aim of this work is to study the characteristics of the electrodialysis of a sodium sulphate solution with experimental bipolar membranes based on the MA-41 anion exchange membrane and a liquid sulphonated cation-exchanger modified with bentonite clays. The conversion of sodium sulphate was conducted by electrodialysis with bipolar membranes obtained by applying a liquid sulphonated cation-exchanger containing particles of bentonite clay to the MA-41 anion-exchange membrane.To increase the performance of membranes in terms of hydrogen and hydroxyl ions, we carried out organomodifications of bentonite with alkyldimethylbenzylammonium chloride and stearic acid at various concentrations. The bipolar membrane with the addition of bentonite modified with alkyldimethylbenzylammonium chloride (2 wt%) showed a higher performance in terms of H+-ions. The bipolar membrane with bentonite modified with stearic acid (3 wt%) added to its cation-exchangelayer is the most effective in terms of obtaining a flux of OH--ions. It was shown that a combination ofalkyldimethylbenzylammonium chloride (2 wt%) and stearic acid (3 wt%) used to modify bentonite can increase the performance of the bipolar membrane during the conversion of sodium sulphate, both in terms of the acid and alkali.


Sign in / Sign up

Export Citation Format

Share Document