shear tests
Recently Published Documents


TOTAL DOCUMENTS

1259
(FIVE YEARS 315)

H-INDEX

47
(FIVE YEARS 8)

2022 ◽  
Vol 12 (1) ◽  
pp. 1-24
Author(s):  
D. Reid ◽  
R. Fanni ◽  
A. Fourie

The cross-anisotropic nature of soil strength has been studied and documented for decades, including the increased propensity for cross-anisotropy in layered materials. However, current engineering practice for tailings storage facilities (TSFs) does not appear to generally include cross-anisotropy considerations in the development of shear strengths. This being despite the very common layering profile seen in subaerially-deposited tailings. To provide additional data to highlight the strength cross-anisotropy of tailings, high quality block samples from three TSFs were obtained and trimmed to enable Hollow Cylinder Torsional Shear tests to be sheared at principal stress angles of 0 and 45 degrees during undrained shearing. Consolidation procedures were carried out such that the drained rotation of principal stress angle that would precede potential undrained shear events for below-slope tailings was reasonably simulated. The results indicated the significant effects of cross-anisotropy on the undrained strength, instability stress ratio, contractive tendency and brittleness of each of the three tailings types. The magnitude of cross-anisotropy effects seen was generally consistent with previous published data on sands.


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Xinxin Zheng ◽  
Ruichen Chen ◽  
Jian Chen ◽  
Song Chen ◽  
Lulu Shi

To investigate the effects of internal shear fragmentation on dry granular flow, in this study a series of ring shear tests were performed on quartz sand samples under different normal stresses (100 kPa, 200 kPa, and 300 kPa), shear displacements (3 m, 5 m, 10m, 15 m, and 20 m), and shear rates (30 deg min−1, 60 deg min−1, and 90 deg min−1). Next, the grain-size distributions, fractal dimensions, and microcharacteristics of the quartz sand before and after the experiments were compared and analyzed. The study results show that grain breakage under shearing preferentially occurs at the edges of the particles and forms a bimodal distribution in frequency grain-size distribution curves, which is consistent with observations of rock avalanches. The fine particles prevent the coarse particles from breaking, in turn leading to the ultimate grain-size distribution and stable fractal dimension (2.61) of quartz sand at relatively small shear displacements compared with the travel distance of rock avalanches. The results of this study suggest that the fragmentation of rock avalanches during the shear spread stage may be far less significant than previously believed. Therefore, the fragmentation effect is not considered to be a major factor of the hypermobility in the late stage of rock avalanches.


CivilEng ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 35-50
Author(s):  
Akram Deiminiat ◽  
Li Li

The determination of shear strength parameters for coarse granular materials such as rockfill and waste rocks is challenging due to their oversized particles and the minimum required ratio of 10 between the specimen width (W) and the maximum particle size (dmax) of tested samples for direct shear tests. To overcome this problem, a common practice is to prepare test samples by excluding the oversized particles. This method is called the scalping scaling down technique. Making further modifications on scalped samples to achieve a specific particle size distribution curve (PSDC) leads to other scaling down techniques. Until now, the parallel scaling down technique has been the most popular and most commonly applied, generally because it produces a PSDC parallel and similar to that of field material. Recently, a critical literature review performed by the authors revealed that the methodology used by previous researchers to validate or invalidate the scaling down techniques in estimating the shear strength of field materials is inappropriate. The validity of scaling down techniques remains unknown. In addition, the minimum required W/dmax ratio of 10, stipulated in ASTM D3080/D3080M-11 for direct shear tests, is not large enough to eliminate the specimen size effect (SSE). The authors’ recent experimental study showed that a minimum W/dmax ratio of 60 is necessary to avoid any SSE in direct shear tests. In this study, a series of direct shear tests were performed on samples with different dmax values, prepared by applying scalping and parallel scaling down techniques. All tested specimens had a W/dmax ratio equal to or larger than 60. The test results of the scaled down samples with dmax values smaller than those of field samples were used to establish a predictive equation between the effective internal friction angle (hereafter named “friction angle”) and dmax, which was then used to predict the friction angles of the field samples. Comparisons between the measured and predicted friction angles of field samples demonstrated that the equations based on scalping scaling down technique correctly predicted the friction angles of field samples, whereas the equations based on parallel scaling down technique failed to correctly predict the friction angles of field samples. The scalping down technique has been validated, whereas the parallel scaling down technique has been invalidated by the experimental results presented in this study.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 235
Author(s):  
Dominika Grygier ◽  
Maciej Kujawa ◽  
Piotr Kowalewski

Nowadays, the replacement of a hip joint is a standard surgical procedure. However, researchers have continuingly been trying to upgrade endoprostheses and make them more similar to natural joints. The use of 3D printing could be helpful in such cases, since 3D-printed elements could mimic the natural lubrication mechanism of the meniscus. In this paper, we propose a method to deposit plastics directly on titanium alloy using 3D printing (FDM). This procedure allows one to obtain endoprostheses that are more similar to natural joints, easier to manufacture and have fewer components. During the research, biocompatible polymers suitable for 3D FDM printing were used, namely polylactide (PLA) and polyamide (PA). The research included tensile and shear tests of metal–polymer bonds, friction coefficient measurements and microscopic observations. The friction coefficient measurements revealed that only PA was promising for endoprostheses (the friction coefficient for PLA was too high). The strength tests and microscopic observations showed that PLA and PA deposition by 3D FDM printing directly on Ti6Al4V titanium alloy is possible; however, the achieved bonding strength and repeatability of the process were unsatisfactory. Nevertheless, the benefits arising from application of this method mean that it is worthwhile to continue working on this issue.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Y.J. Zhang ◽  
Renzhong Guo ◽  
Yunhui Zhang ◽  
K. Liang

Purpose Based on the mechanical model of typical shear tests, this study aims to propose the test principle and method of freshwater/seawater ice adhesion shear strength of carbon ceramic brake pads for amphibious aircraft, designs and builds the test equipment, prepares the freshwater/seawater ice samples and completes the tests. Design/methodology/approach This study examines the influence of the icing process, mechanism, temperature and freshwater/seawater on ice adhesion shear strength of carbon ceramic brake pads and puts forward a test method for the freshwater/seawater ice adhesion shear strength of amphibious aircraft brake pads. Findings The obtained results examine the influence of the icing process, mechanism, temperature and freshwater/seawater on ice adhesion shear strength of carbon ceramic brake pads. The adhesion shear strength of frozen freshwater and of the seawater of Dalian, Qingdao, Fuzhou and Zhuhai on the surface of aircraft brake pads is measured at –10 to –50°C. It is found that the shear strength of freshwater increases first and then decreases with the decrease of temperature. The adhesion shear strength of seawater; however, increases mainly linear with the decrease of temperature. Originality/value The value of this paper is that the test method proposed and test results for the freshwater/seawater ice adhesion shear strength of amphibious aircraft brake pads provide technical support for the anti-icing design of amphibious aircraft brake devices.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2027
Author(s):  
Zhimin Liang ◽  
Fei Shen ◽  
Zongyuan Yang ◽  
Da Xu ◽  
Shaowei Wei ◽  
...  

Sn–Sb system solders and ENIG/ENEPIG surface finish layers are commonly used in electronic products. To illustrate the thermal reliability evaluation of such solder joints, we studied the interfacial microstructure and shear properties of Sn-4.5Sb-3.5Bi-0.1Ag/ENIG and Sn-4.5Sb-3.5Bi-0.1Ag/ENEPIG solder joints after aging at 150 °C for 250, 500 and 1000 h. The results show that the intermetallic compound of Sn-4.5Sb-3.5Bi-0.1Ag/ENIG interface was more continuous and uniform compared with that of Sn-4.5Sb-3.5Bi-0.1Ag/ENEPIG interface after reflow. The thickness of the interfacial intermetallic compounds of the former was significantly thinner than that of the latter before and after aging. With extension of aging time, the former interface was stable, while obvious voids appeared at the interface of the latter after 500 h aging and significant fracture occurred after 1000 h aging. The shear tests proved that shear strength of solder joints decreased with increasing aging time. For the Sn-4.5Sb-3.5Bi-0.1Ag/ENEPIG joint after 1000 h aging, the fracture mode is ductile-brittle mixed type, which means fracture could occur at the solder matrix or the solder/IMC interface. For other samples of these two types of joints, ductile fracture occurred inside of the solder. The Sn-4.5Sb-3.5Bi-0.1Ag/ENIG solder joint was thermally more reliable than Sn-4.5Sb-3.5Bi-0.1Ag/ENEPIG.


Sign in / Sign up

Export Citation Format

Share Document