Aircraft Engineering and Aerospace Technology
Latest Publications


TOTAL DOCUMENTS

787
(FIVE YEARS 490)

H-INDEX

11
(FIVE YEARS 5)

Published By Emerald

1748-8842

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ridvan Oruc ◽  
Ozlem Sahin ◽  
Tolga Baklacioglu

Purpose The purpose of this paper is to create a new fuel flow rate model using cuckoo search algorithm (CSA) for the descending stage of the flight. Design/methodology/approach Using the actual flight data record data of the B737-800 aircraft, a new fuel flow rate model has been developed for this aircraft type. The created model is to predict the fuel flow rate with high accuracy depending on the altitude and true airspeed. In addition, the CSA fuel flow rate model was used to calculate the fuel consumption for the point merge system, which is used for combining the initial approach to the final approach at Istanbul Airport, the largest airport of Turkey. Findings As a result of the analysis, the correlation coefficient value is found as 0.996858 for Flight 1, 0.998548 for Flight 2, 0.995363 and 0.997351 for Flight 3 and Flight 4, respectively. The values that are so close to 1 indicate that the model predicts the real fuel flow rate data with high accuracy. Practical implications This model is considered to be useful in air traffic management decision support systems, aircraft performance models, models used for trajectory prediction and strategies used by the aviation community to reduce fuel consumption and related emissions. Originality/value The importance of this study lies in the fact that to the best of the authors’ knowledge, it is the first fuel flow rate model developed using CSA for the descent stage in the existing literature; the data set used is real values.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nazim Ata ◽  
Berna Aytac ◽  
Dijan Ertemir ◽  
Muzaffer Cetinguc ◽  
Ebru Yazgan

Purpose Aeromedical training is meant to train aircrew in combating physiological problems that they might face in flight. Given the importance of the training, there are limited studies in the literature investigating the anxiety levels during aeromedical training along with training outcomes. This study aims to assess the untrained participants’ anxiety levels before and after aeromedical training, investigate the differences in anxiety levels across different physiological training devices and determine whether participants’ anxiety levels affect their G tolerances. Design/methodology/approach This study was carried out on 61 healthy male subjects (n = 61) who had applied for initial aeromedical training. Anxiety surveys and visual analog scales were administered before and after the practical aeromedical training. In addition, blood pressure and heart rate measurements were carried out. Findings Participants had significantly higher anxiety levels before human centrifuge training (pre-Glab) than before the altitude chamber training (pre-hypobaric). Participants who experienced G-induced loss of consciousness (G-LOC) had slightly more anxiety reported than the non-G-LOC group. There was a significant decrease between pre-Glab and post-Glab (after the human centrifuge training) and between pre-hypobaric and post-hypobaric (after the altitude chamber training) anxiety levels. The incidence of G-LOC was lower in participants having higher pre-G-Lab blood pressure. However, the difference in anxiety levels between the G-LOC group and the non-G-LOC group was not statistically significant. Research limitations/implications In this study, state anxiety inventory was not performed after human centrifuge training as centrifuge training lasted for around 5 min only, and it is not advisable to repeat state anxiety inventory in such short periods. Blood pressure was not measured after G-Lab training because human centrifuge training is hard training and has an impact on blood pressure. Hence, it would have been difficult to distinguish whether the blood pressure change was due to anxiety or hard physical activity. These limitations, especially for the G-Lab, caused us to evaluate state anxiety only with VAS. It would be worthwhile to repeat similar studies with objective measurements before and after the training. Practical implications This information suggests that instructors who train the applicants on aerospace medicine be ready for the possible consequences of anxiety. Originality/value There are only a few centers in the world that include all the physiological training devices (practical aeromedical training laboratories) together. To the best of authors’ knowledge, there are no studies in the literature investigating the differences in anxiety levels across various physiological training devices. The studies about the effect of anxiety levels on aeromedical training outcomes and anxiety levels before and after the training are scant.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Weishi Chen ◽  
Yifeng Huang ◽  
Xianfeng Lu ◽  
Jie Zhang

Purpose This paper aims to review the critical technology development of avian radar system at airports. Design/methodology/approach After the origin of avian radar technology is discussed, the target characteristics of flying birds are analyzed, including the target echo amplitude, flight speed, flight height, trajectory and micro-Doppler. Four typical airport avian radar systems of Merlin, Accipiter, Robin and CAST are introduced. The performance of different modules such as antenna, target detection and tracking, target recognition and classification, analysis of bird information together determines the detection ability of avian radar. The performances and key technologies of the ubiquitous avian radar are summarized and compared with other systems, and their applications, deployment modes, as well as their advantages and disadvantages are introduced and analyzed. Findings The ubiquitous avian radar achieves the long-time integration of target echoes, which greatly improves detection and classification ability of the targets of birds or drones, even under strong background clutter at airport. In addition, based on the big data of bird situation accumulated by avian radar, the rules of bird activity around the airport can be mined to guide the bird avoidance work. Originality/value This paper presented a novel avian radar system based on ubiquitous digital radar technology. The authors’ experience has confirmed that this system can be effective for airport bird strike prevention and management. In the future, the avian radar system will see continued improvement in both software and hardware, as the system is designed to be easily extensible.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Tushar Sonar ◽  
Visvalingam Balasubramanian ◽  
Sudersanan Malarvizhi ◽  
Thiruvenkatam Venkateswaran ◽  
Dhenuvakonda Sivakumar

Purpose The primary objective of this investigation is to optimize the constricted arc tungsten inert gas (CA-TIG) welding parameters specifically welding current (WC), arc constriction current (ACC), ACC frequency (ACCF) and CA traverse speed to maximize the tensile properties of thin Inconel 718 sheets (2 mm thick) using a statistical technique of response surface methodology and desirability function for gas turbine engine applications. Design/methodology/approach The four factor – five level central composite design (4 × 5 – CCD) matrix pertaining to the minimum number of experiments was chosen in this investigation for designing the experimental matrix. The techniques of numerical and graphical optimization were used to find the optimal conditions of CA-TIG welding parameters. Findings The thin sheets of Inconel 718 (2 mm thick) can be welded successfully using CA-TIG welding process without any defects. The joints welded using optimized conditions of CA-TIG welding parameters showed maximum of 99.20%, 94.45% and 73.5% of base metal tensile strength, yield strength and elongation. Originality/value The joints made using optimized CA-TIG welding parameters disclosed 99.20% joint efficiency which is comparatively 20%–30% superior than conventional TIG welding process and comparable to costly electron beam welding and laser beam welding processes. The parametric mathematical equations were designed to predict the tensile properties of Inconel 718 joints accurately with a confidence level of 95% and less than 4.5% error. The mathematical relationships were also developed to predict the tensile properties of joints from the grain size (secondary dendritic arm spacing-SDAS) of fusion zone microstructure.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Krishanu Ganguly ◽  
Saurabh Chandraker ◽  
Haraprasad Roy

Purpose The purpose of this study is to bring down collective information about various issues encountered in modelling of rotor systems. Design/methodology/approach The most important and basic part of “rotor dynamics” is the study related to its different modelling techniques which further involves the analysis of shaft for understanding the system potential, competence and reliability. The issues addressed in this study are classified mainly into two parts: the initial part gives out a vast overview of significant problems as well as different techniques applied to encounter modelling of rotor systems, while the latter part of the study describes the post-processing problem that occurs while performing the dynamic analysis. Findings The review incorporates the most important research works that have already placed a benchmark right from the beginning as well as the recent works that are still being carried out to further produce better outcomes. The review concludes with the modal analysis of rotor shaft to show the importance of mathematical model through its dynamic behaviour. Originality/value A critical literature review on the modelling techniques of rotor shaft systems is provided from earliest to latest along with its real-time application in different research and industrial fields.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Weiliang Zhu ◽  
Zhaojun Pang ◽  
Jiyue Si ◽  
Zhonghua Du

Purpose This paper aims to study the encounter issues of the Tethered-Space Net Robot System (TSNRS) with non-target objects on orbit during the maneuver, including the collision issues with small space debris and the obstacle avoidance from large obstacles. Design/methodology/approach For the collision of TSNRS with small debris, the available collision model of the tethered net and its limitation is discussed, and the collision detection method is improved. Then the dynamic response of TSNRS is studied and a closed-loop controller is designed. For the obstacle avoidance, the variable enveloping circle of the TSNRS has coupled with the artificial potential field (APF) method. In addition, the APF is improved with a local trajectory correction method to avoid the overbending segment of the trajectory. Findings The collision model coupled with the improved collision detection method solves the detection failure and speeds up calculation efficiency by 12 times. Collisions of TSNRS with small debris make the local thread stretch and deforms finally making the net a mess. The boundary of the disturbance is obtained by a series of collision tests, and the designed controller not only achieved the tracking control of the TSNRS but also suppressed the disturbance of the net. Practical implications This paper fills the gap in the research on the collision of the tethered net with small debris and makes the collision model more general and efficient by improving the collision detection method. And the coupled obstacle avoidance method makes the process of obstacle avoidance safer and smoother. Originality/value The work in this paper provides a reference for the on-orbit application of TSNRS in the active space debris removal mission.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Syam Narayanan S. ◽  
Asad Ahmed R.

Purpose The purpose of this study is to experimentally analyse the effect of flexible and stiffened membrane wings in the lift generation of flapping micro air vehicle (MAV). Design/methodology/approach This is analysed by the rectangle wing made up of polyethylene terephthalate sheets of 100 microns. MAV is tested for the free stream velocity of 2 m/s, 4 m/s, 6 m/s and k* of 0, 0.25, 1, 3, 8. This test is repeated for flapping MAV of the free flapping frequency of 2 Hz, 4 Hz, 6 Hz, 10 Hz and 12 Hz. Findings This study shows that the membrane wing with proper stiffeners can give better lift generation capacity than a flexible wing. Research limitations/implications Only a normal force component is measured, which is perpendicular to the longitudinal axis of the model. Practical implications In MAVs, the wing structures are thin and light, so the effect of fluid-structure interactions is important at low Reynold’s numbers. This data are useful for the MAV developments. Originality/value The effect of chord-wise flexibility in lift generation is the study of the effect of a flexible wing and rigid wing in MAV. It is analysed by the rectangle wing. The coefficient of normal force at different free stream conditions was analysed.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Y.J. Zhang ◽  
Renzhong Guo ◽  
Yunhui Zhang ◽  
K. Liang

Purpose Based on the mechanical model of typical shear tests, this study aims to propose the test principle and method of freshwater/seawater ice adhesion shear strength of carbon ceramic brake pads for amphibious aircraft, designs and builds the test equipment, prepares the freshwater/seawater ice samples and completes the tests. Design/methodology/approach This study examines the influence of the icing process, mechanism, temperature and freshwater/seawater on ice adhesion shear strength of carbon ceramic brake pads and puts forward a test method for the freshwater/seawater ice adhesion shear strength of amphibious aircraft brake pads. Findings The obtained results examine the influence of the icing process, mechanism, temperature and freshwater/seawater on ice adhesion shear strength of carbon ceramic brake pads. The adhesion shear strength of frozen freshwater and of the seawater of Dalian, Qingdao, Fuzhou and Zhuhai on the surface of aircraft brake pads is measured at –10 to –50°C. It is found that the shear strength of freshwater increases first and then decreases with the decrease of temperature. The adhesion shear strength of seawater; however, increases mainly linear with the decrease of temperature. Originality/value The value of this paper is that the test method proposed and test results for the freshwater/seawater ice adhesion shear strength of amphibious aircraft brake pads provide technical support for the anti-icing design of amphibious aircraft brake devices.


2022 ◽  
Vol 94 (1) ◽  
pp. 1
Author(s):  
Spyros Pantelakis ◽  
Andreas Strohmayer ◽  
Liberata Guadagno
Keyword(s):  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lin Meng ◽  
Yang Gao ◽  
Yangyang Liu ◽  
Shengfang Lu

Purpose As a short take-off and landing aircraft, FanWing has the capability of being driven under power a short distance from a parking space to the take-off area. The purpose of this paper is to design the take-off control system of FanWing and study the factors that influence the short take-off performance under control. Design/methodology/approach The force analysis of FanWing is studied in the take-off phase. Two take-off control methods are researched, and several factors that influence the short take-off performance are studied under control. Findings The elevator and fan wing control systems are designed. Although the vehicle load increases under the fan wing control, the fan wing control is not a recommended practice in the take-off phase for its sensitivity to the pitch angle command. The additional pitch-down moment has a significant influence on the control system and the short take-off performance that the barycenter variation of FanWing should be considered carefully. Practical implications The presented efforts provide a reference for the location of the center of gravity in designing FanWing. The traditional elevator control is more recommended than the fan wing control in the take-off phase. Originality/value This paper offers a valuable reference on the control system design of FanWing. It also proves that there is an additional pith-down moment that needs to be paid close attention to. Four factors that influence the short take-off performance are compared under control.


Sign in / Sign up

Export Citation Format

Share Document