phenotypic analysis
Recently Published Documents


TOTAL DOCUMENTS

1520
(FIVE YEARS 383)

H-INDEX

79
(FIVE YEARS 7)

2022 ◽  
Vol 14 (2) ◽  
pp. 1
Author(s):  
Fei Zheng ◽  
Meijing Zhang ◽  
Yiwen Zhen ◽  
Jianhua Yuan ◽  
Wenming Zhao ◽  
...  

The establishment of female inflorescence morphology is of great significance to the formation of final maize yield. defective ear1 (dea1) is a novel maize mutant with developmental defect of female inflorescence caused by natural variation. Morphological analysis revealed that the mutant dea1 was characterized as a “scar-like” crack on the adaxial side of the top of the ear, accounting for 28.6-100.0% of the ear length, with an average of 32.4%. The results of scanning electron microscope showed that there was collapse in the formation of paired spikelet primordium at the base of the axillary meristem. Most of investigated botanical and agronomical traits of dea1 were lower than those of wild type, except for ear length and hundred grain weight. The grain yield per ear of mutant dea1 was 35.93% lower than that of wild type, and the width of mutation crack contributed the most to the yield loss per ear. The identification of the mutant dea1 and the characteristically phenotypic analysis provide a theoretical basis for the study of the molecular regulation mechanism of ear development and the application of high-yield breeding in maize.The establishment of female inflorescence morphology is of great significance to the formation of final maize yield. defective ear1 (dea1) is a novel maize mutant with developmental defect of female inflorescence caused by natural variation. Morphological analysis revealed that the mutant dea1 was characterized as a “scar-like” crack on the adaxial side of the top of the ear, accounting for 28.6-100.0% of the ear length, with an average of 32.4%. The results of scanning electron microscope showed that there was collapse in the formation of paired spikelet primordium at the base of the axillary meristem. Most of investigated botanical and agronomical traits of dea1 were lower than those of wild type, except for ear length and hundred grain weight. The grain yield per ear of mutant dea1 was 35.93% lower than that of wild type, and the width of mutation crack contributed the most to the yield loss per ear. The identification of the mutant dea1 and the characteristically phenotypic analysis provide a theoretical basis for the study of the molecular regulation mechanism of ear development and the application of high-yield breeding in maize.


2022 ◽  
Author(s):  
Yu Zhang ◽  
Qiaoqiao He ◽  
Xixi Zhou ◽  
Yewen Wang ◽  
Peijiang Li ◽  
...  

Abstract Background: The Qinba region is the transition region between Indica and Japonica varieties in China. It has a long history of Indica rice planting of more than 7000 years and is also a planting area for fine-quality Indica rice. The aims of this study are to explore different genetic markers applied to the analysis population structure, genetic diversity, selection and optimization of molecular markers of Indica rice, thus providing more information for the protection and utilization on germplasm resources of Indica rice. Methods: 15 phenotypic traits, a core set of 48 SSR markers as well as SNPs data obtained by genotyping-by-sequencing (GBS, NlaIII and MseI digestion, referred to as SNPs-NlaIII and SNPs-MseI, respectively) for this panel of 93 samples using the Illumina HiSeq2000 sequencing platform, were employed to explore the genetic diversity and population structure of 93 samples.Results: The average of coefficient of variation (CV) and diversity index (He) were 29.72% and 1.83 ranging from 3.07% to 137.43%, and from 1.45 to 2.03, respectively. The correlation coefficient between 15 phenotypic traits ranged from 0.984 to -0.604. The first four PCs accounted for 70.693% phenotypic variation based on phenotypic analysis. A total of 379 alleles were obtained using SSR markers, encompassing an average of 8.0 alleles per primer. Polymorphic bands (PPB) and polymorphism information content (PIC) was 88.65% and 0.77, respectively. The Mantel test showed that the correlation between the genetic distance matrix based on SNPs-NlaIII and SNPs-MseI was the largest (R2=0.88), and that based on 15 phenotypic traits and SSR was the smallest (R2=0.09). The 93 samples could be clustered into two subgroups by 3 types of genetic markers. Molecular variance analysis revealed that the genetic variation was 2% among populations and 98% within populations (the Nm was 0.16), Tajima’s D value was 1.66, the FST between the two populations was 0.61 based on 72,824 SNPs. Conclusions: The population genetic variation explained by SNPs was larger than that explained by SSRs. The gene flow of 93 samples used in this study was larger than that of naturally self-pollinated crops, which may be caused by long-term breeding selection of Indica rice in the Qinba region. The genetic structure of the 93 samples was simple and lacked rare alleles.


2021 ◽  
Vol 17 (12) ◽  
pp. e1009980
Author(s):  
Viktoria Reithofer ◽  
Jordan Fernández-Pereira ◽  
María Alvarado ◽  
Piet de Groot ◽  
Lars-Oliver Essen

Candida glabrata is an opportunistic pathogenic yeast frequently causing infections in humans. Though it lacks typical virulence factors such as hyphal development, C. glabrata contains a remarkably large and diverse set of putative wall adhesins that is crucial for its success as pathogen. Here, we present an analysis of putative adhesins from the homology clusters V and VI. First, sequence similarity network analysis revealed relationships between cluster V and VI adhesins and S. cerevisiae haze protective factors (Hpf). Crystal structures of A-domains from cluster VI adhesins Awp1 and Awp3b reveal a parallel right-handed β-helix domain that is linked to a C-terminal β-sandwich. Structure solution of the A-region of Awp3b via single wavelength anomalous diffraction phasing revealed the largest known lanthanide cluster with 21 Gd3+ ions. Awp1-A and Awp3b-A show structural similarity to pectate lyases but binding to neither carbohydrates nor Ca2+ was observed. Phenotypic analysis of awp1Δ, awp3Δ, and awp1,3Δ double mutants did also not confirm their role as adhesins. In contrast, deletion mutants of the cluster V adhesin Awp2 in the hyperadhesive clinical isolate PEU382 demonstrated its importance for adhesion to polystyrene or glass, biofilm formation, cell aggregation and other cell surface-related phenotypes. Together with cluster III and VII adhesins our study shows that C. glabrata CBS138 can rely on a set of 42 Awp1-related adhesins with β-helix/α-crystallin domain architecture for modifying the surface characteristics of its cell wall.


2021 ◽  
Author(s):  
Freya Sibbertsen ◽  
Laura Glau ◽  
Kevin Paul ◽  
Thomas S. Mir ◽  
Søren W. Gersting ◽  
...  

2021 ◽  
Author(s):  
Adrian Herod ◽  
Jean‐Guillaume Emond‐Rheault ◽  
Sandeep Tamber ◽  
Lawrence Goodridge ◽  
Roger C. Lévesque ◽  
...  
Keyword(s):  

2021 ◽  
Vol 53 (4) ◽  
pp. 632-644
Author(s):  
V.T. Tam ◽  
L.T. Vy ◽  
N.T. Huu ◽  
P.T.T. Ha

Iron toxicity has become a serious issue affecting rice (Oryza sativa L.) production in many irrigated lowland areas. The selection of Fe2+-tolerant rice cultivars under iron toxicity conditions and the identification of molecular markers are good approaches to obtaining tangible results. This study aimed to identify simple sequence repeat (SSR) markers that were associated with iron tolerance traits in a rice backcross population. A total of 117 seedlings from the backcross (BC3F2) of ‘OM6830’/‘AS996’//‘AS996’ were phenotyped at the 4-week-seedling stage at Ton Duc Thang University, Ho Chi Minh City, Vietnam. The rice population was screened in Yoshida nutrient medium supplemented with FeCl2 at a concentration of 150 mg L−1 under greenhouse conditions. Phenotypic analysis was conducted by scoring two parameters, namely, root length and leaf bronzing. Genotypic analysis was carried out on the BC3F2 population by using four markers, i.e., RM6, RM240, RM252, and RM451, for association analysis with iron tolerance. A total of 23 BC3F2 lines were selected on the basis of their higher tolerance (score 1) for Fe2+ compared with the tolerant parental line ‘AS996’. The markers RM6 and RM240 were highly polymorphic and identified different Fe2+-tolerant lines in the BC3F2 population. Among the BC3F3 progeny derived from the selected 23 BC3F2 lines, BC3F3-7 was identified as the most Fe2+-tolerant line. BC3F3-15 was also found to be Fe2+ tolerant. Both lines showed good development capability and provided high yields under stress conditions. These tolerant BC3F3 lines could be further screened with additional SSR markers in future breeding programs aiming to increase rice production in iron-contaminated areas of the Mekong Delta, Vietnam.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tongxuan Su ◽  
Wei Chen ◽  
Daosheng Wang ◽  
Yingchao Cui ◽  
Qi Ni ◽  
...  

Toxin A-negative, toxin B-positive Clostridioides difficile strains, which primarily include the ST81 and ST37 genotypes, are predominant in C. difficile infections leading to antibiotic-associated diarrhea in China. Recently, ST81 has been reported as the most prevalent genotype rather than ST37, although the genetic and functional characteristics of the two genotypes remain ambiguous. In this study, we conducted comprehensive comparative analysis of these two genotypes through complete genome sequencing and phenotypic profiling. The whole genome sequencing revealed that the ST81 and ST37 isolates were closely related genetically with similar gene compositions, and high rate of the core genome shared. The integrative and conjugative elements identified in ST81 were similar to those in ST37, albeit with more diverse and insertion regions. By characterizing the phenotypes related to colonization or survival in the host, we found that the ST81 isolates exhibited robust colonization ability and survival both in vitro and in vivo, enhanced spore production, and slightly increased motility, which may be attributable to the discrepancy in non-synonymous single-nucleotide polymorphisms in the relevant functional genes. Furthermore, the ST81 isolates displayed a significantly higher rate of resistance to fluoroquinolones compared with the ST37 isolates (94.12% vs. 62.5%) and mostly carried the amino acid substitution Asp426Val in GyrB. In summary, the results of our study indicate that ST81 isolates exhibit enhanced ability to transmit between hosts and survive in harsh environments, providing key genetic insights for further epidemiological investigations and surveillance of C. difficile infection.


2021 ◽  
Vol 22 (24) ◽  
pp. 13588
Author(s):  
Huachun Sheng ◽  
Shuangxi Zhang ◽  
Yanping Wei ◽  
Shaolin Chen

In plants, seedling growth is subtly controlled by multiple environmental factors and endogenous phytohormones. The cross-talk between sugars and brassinosteroid (BR) signaling is known to regulate plant growth; however, the molecular mechanisms that coordinate hormone-dependent growth responses with exogenous sucrose in plants are incompletely understood. Skotomorphogenesis is a plant growth stage with rapid elongation of the hypocotyls. In the present study, we found that low-concentration sugars could improve skotomorphogenesis in a manner dependent on BR biosynthesis and TOR activation. However, accumulation of BZR1 in bzr1-1D mutant plants partially rescued the defects of skotomorphogenesis induced by the TOR inhibitor AZD, and these etiolated seedlings displayed a normal phenotype like that of wild-type seedlings in response to both sucrose and non-sucrose treatments, thereby indicating that accumulated BZR1 sustained, at least partially, the sucrose-promoted growth of etiolated seedlings (skotomorphogenesis). Moreover, genetic evidence based on a phenotypic analysis of bin2-3bil1bil2 triple-mutant and gain-of-function bin2–1 mutant plant indicated that BIN2 inactivation was conducive to skotomorphogenesis in the dark. Subsequent biochemical and molecular analyses enabled us to confirm that sucrose reduced BIN2 levels via the TOR–S6K2 pathway in etiolated seedlings. Combined with a determination of the cellulose content, our results indicated that sucrose-induced BIN2 degradation led to the accumulation of BZR1 and the enhancement of cellulose synthesis, thereby promoting skotomorphogenesis, and that BIN2 is the converging node that integrates sugar and BR signaling.


2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Jessica Fletcher ◽  
Gary Moran ◽  
Derek Sullivan

Candida albicans has between 10-15 Telomere-associated ORF family(TLO)genes, whereas its closest relative, Candida dubliniensis, has two. The Tlo proteins are components of the Mediator complex which plays an important role in transcriptional regulation. CRISPR-Cas9 mutagenesis was used to generate a TLOnull mutant of C. albicans. Phenotypic analysis of the mutant showed significantly reduced fitness, with major defects in growth rate, morphogenesis, stress resistance and virulence in a Galleria mellonellamodel. Clade representative TLOα1, TLOβ2 and TLOγ11constructs were reintroduced into the null mutant background to determine if members of the TLO gene family exhibit functional differences. The genes were reintroduced under the control of the TET1 and ENO1promoters. TLOα1and TLOβ2expression restored stress tolerance and growth rate, in some cases to the level of the WT. TLOβ2expression also showed a dramatic effect on morphology resulting in constitutive true hyphal growth. Moderate expression of TLOγ11 had no detectable effect on many of the phenotypes tested, however overexpression increased biofilm formation in Spider medium, and also conferred increased resistance to cell wall stressors. These data suggest that individual TLO genes have distinct functions and that the diversity within the TLO family may contribute to the relative success of C. albicans as a coloniser and pathogen of humans.


Sign in / Sign up

Export Citation Format

Share Document