The target of the biomass co-pyrolysis is improvingthe heating value of the produced bio-products of a certain type of feedstock, besides disposal of more than one residue in the same time. Thus, this work aims to operate a local fabricated fixed-bed pyrolyzer to improve the pyrolytic gas yield produced by the ground pieces of three biomass residues namely Mango trees Pruning Logs (MPL), Sugarcane bagasse (SB) and Rice straw (RS) using an affordable slow pyrolysis technique. This work was carried out under slow pyrolysis conditions represented in final pyrolysis temperature of 400 °C, vapor residence time of 4 min, heating rate of 0.01-1 °C/s in full absence of oxygen. The pyrolytic gas production was assessed under different feedstock mixing ratios of (1:2:1), (1:1:2) and (2:1:1) as ratio of (RS: SB: MPL), particle lengths of 1-5, 10-15 and 20-25 mm, with and without sandy bed at the bottom of pyrolysis chamber as a fluidized bed. The obtained results showed that, using the fluidized fixed-bed pyrolyzer under slow co-pyrolysis conditions gave the optimum results where in, the pyrolytic gas concentration, gas yield, higher heating value of pyrolytic gasand energy conversion efficiency were 55%, 1.09 Nm3 /kg, 14.97 MJ/Nm3 and 85.43%, respectively, and 53.7%, 1.08 Nm3 /kg, 13.75 MJ/Nm3 ,77.71% in case of using the pyrolyzer without fluidized bed under the same operating conditions. So, the pyrolyzer with fluidized bed achieves an increment in the higher heating value and energy conversion efficiency by about 8.15% and 9.03%, respectivly over the pyrolyzer without fluidized bed.Furthermore, the cost per energy unit of pyrolytic gas produced by the fluidized bed pyrolyzer is lower than the common two fossil gaseous fuels of natural gas and LPG costs by about 28.57% and 80%, respectively.