organic thin film transistors
Recently Published Documents


TOTAL DOCUMENTS

2134
(FIVE YEARS 315)

H-INDEX

112
(FIVE YEARS 11)

Author(s):  
Satoshi Inoue ◽  
Yoshiaki HATTORI ◽  
Masatoshi KITAMURA

Abstract A trimethylsilyl-monolayer modified by vacuum ultraviolet (VUV) light has been investigated for use in solution-processed organic thin-film transistors (OTFTs). The VUV irradiation changed a hydrophobic trimethylsilyl-monolayer formed from hexamethyldisilazane vapor into a hydrophilic surface suitable for solution processing. The treated surface was examined via water contact angle measurement and X-ray photoelectron spectroscopy. An appropriate irradiation of VUV light enabled the formation of a dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) film on a modified monolayer by spin-coating. Consequently, the C8-BTBT-based OTFT with a monolayer modified for an optimal VUV irradiation time exhibited a field-effect mobility up to 4.76 cm2 V−1 s−1. The partial monolayer modification with VUV can be adapted to a variety of solution-processes and organic semiconductors for prospective printed electronics.


Author(s):  
Rosemary Cranston ◽  
Benjamin King ◽  
Chloé Dindault ◽  
Trevor M. Grant ◽  
Nicole Rice ◽  
...  

Silicon phthalocyanine (SiPc) derivatives have recently emerged as promising materials for n-type organic thin-film transistors (OTFTs) with the ability to be fabricated either by solid state or solution processes through...


2022 ◽  
pp. 1-1
Author(s):  
Fiheon Imroze ◽  
Mithun Chennamkulam Ajith ◽  
Parthasarathy Venkatakrishnan ◽  
Soumya Dutta

Author(s):  
Subhash Singh ◽  
Hiroyuki Matsui ◽  
Shizuo Tokito

Abstract We report printed single and dual-gate organic thin film transistors (OTFTs) and PMOS inverters fabricated on 125 µm-thick flexible polyethylene naphthalate (PEN) substrate. All the electrodes (gate, source, and drain) are inkjet-printed, while the parylene dielectric is formed by chemical vapor deposition. A dispenser system is used to print the active channel material using a blend of 2,7-dihexyl-dithieno[2,3-d;2',3'-d']benzo[1,2-b;4,5-b']dithiophene (DTBDT-C6) and polystyrene (PS) in tetralin solvent, which gives highest mobility of 0.43 cm2/Vs. Dual-gate OTFTs are characterized by keeping the other gate electrode either in grounded or floating state. Floating gate electrode devices shows higher apparent mobility and current ratio due to additional capacitance of the parylene dielectric. PMOS inverter circuits are characterized in terms of gain, trip point and noise margin values calculated from the voltage transfer characteristics (VTC). Applied top gate voltage on the load OTFT control the conductivity or threshold voltage (VTh) of the bottom TFT and shift the trip point towards the middle of the VTC curve, and hence increase the noise margin.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7666
Author(s):  
Rubén Caballero ◽  
Boiko Cohen ◽  
Mario Gutiérrez

Porous crystalline materials, such as covalent organic frameworks (COFs), have emerged as some of the most important materials over the last two decades due to their excellent physicochemical properties such as their large surface area and permanent, accessible porosity. On the other hand, thiophene derivatives are common versatile scaffolds in organic chemistry. Their outstanding electrical properties have boosted their use in different light-driven applications (photocatalysis, organic thin film transistors, photoelectrodes, organic photovoltaics, etc.), attracting much attention in the research community. Despite the great potential of both systems, porous COF materials based on thiophene monomers are scarce due to the inappropriate angle provided by the latter, which hinders its use as the building block of the former. To circumvent this drawback, researchers have engineered a number of thiophene derivatives that can form part of the COFs structure, while keeping their intrinsic properties. Hence, in the present minireview, we will disclose some of the most relevant thiophene-based COFs, highlighting their basic components (building units), spectroscopic properties and potential light-driven applications.


Sign in / Sign up

Export Citation Format

Share Document