high enthalpy
Recently Published Documents


TOTAL DOCUMENTS

897
(FIVE YEARS 163)

H-INDEX

32
(FIVE YEARS 5)

2022 ◽  
Vol 11 (2) ◽  
pp. 365-377
Author(s):  
Lingwei Yang ◽  
Xueren Xiao ◽  
Liping Liu ◽  
Jie Luo ◽  
Kai Jiang ◽  
...  

AbstractThis work employed an inductively coupled plasma wind tunnel to study the dynamic oxidation mechanisms of carbon fiber reinforced SiC matrix composite (Cf/SiC) in high-enthalpy and high-speed plasmas. The results highlighted a transition of passive/active oxidations of SiC at 800–1600 °C and 1–5 kPa. Specially, the active oxidation led to the corrosion of the SiC coating and interruption of the SiO2 growth. The transition borders of active/passive oxidations were thus defined with respect to oxidation temperature and partial pressure of atomic O in the high-enthalpy and high-speed plasmas. In the transition and passive domains, the SiC dissipation was negligible. By multiple dynamic oxidations of Cf/SiC in the domains, the SiO2 thickness was not monotonously increased due to the competing mechanisms of passive oxidation of SiC and dissipation of SiO2. In addition, the mechanical properties of the SiC coating/matrix and the Cf/SiC were maintained after long-term dynamic oxidations, which suggested an excellent thermal stability of Cf/SiC serving in thermal protection systems (TPSs) of reusable hypersonic vehicles.


Author(s):  
Rogerio S. Lima

AbstractThere is a strong driving force to improve the production efficiency of thermal barrier coatings (TBCs) manufactured via air plasma spray (APS). To address this need, the high-enthalpy APS torch Axial III Plus was employed to successfully manufacture TBCs by spraying a commercial YSZ feedstock at powder feed rate of 100 g/min using an optimized set of N2/H2 spray parameters; which yielded an impressive YSZ deposition efficiency (DE) value of 70%. This exact same set of optimized spray parameters was used to manufacture the same identical YSZ TBC (over ~160 µm-thick bond-coated substrates) but at two distinct YSZ thickness levels: (i) ~420 µm-thick and (ii) ~930 µm-thick. In spite of the high YSZ feed rate and DE levels, the YSZ TBC revealed a ~14% porous (conventional looking) microstructure, without segmented cracking or horizontal delamination at both thickness levels. The bond strength values measured via the ASTM C633 standard for the ~420 µm-thick and ~930 µm-thick YSZ TBCs were ~13.0 and ~11.6 MPa (respectively); which are among at the upper end values reported in the literature. After the first objective was attained, the second key objective of this work was to evaluate the thermal insulating effectiveness of these two as-sprayed YSZ TBCs. To achieve this objective, a thermal gradient laser-rig was employed to generate a temperature reduction (ΔT) along the TBC-coated coupons under different laser power levels. These distinct laser power levels generated YSZ TBC surface temperatures varying for 1100 to 1500 °C, for the ~420 µm-thick YSZ TBC, and from 1100 to 1680 °C YSZ TBC ~930 µm-thick YSZ TBC. The respective ΔT values for both TBCs are reported. The results of this engineering paper are promising regarding the possibility of improving considerably the manufacturing efficiency of industrial quality conventional-looking porous YSZ TBCs, by using a high-enthalpy N2-based APS torch. This is the first paper published in the open literature showing R&D results of coatings manufactured via the Axial III Plus APS torch.


2022 ◽  
Author(s):  
Damiano Baccarella ◽  
Killian E. Samuels
Keyword(s):  

Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Chi Zhang ◽  
Chunyan Hu ◽  
Shuo Chang ◽  
Jianchao Zhan ◽  
Jiajia Shen ◽  
...  

In this work, we present a surfactant-free miniemulsion approach to obtain silica-based core-shell nanocapsules with a phase change material (PCM) core via in-situ hydrolytic polycondensation of precursor hyperbranched polyethoxysiloxanes (PEOS) as silica shells. The obtained silica-based core-shell nanocapsules (PCM@SiO2), with diameters of ~400 nm and silica shells of ~14 nm, reached the maximum core content of 65%. The silica shell had basically no significant influence on the phase change behavior of PCM, and the PCM@SiO2 exhibited a high enthalpy of melt and crystallization of 123–126 J/g. The functional textile with PCM@SiO2 has been proposed with thermoregulation and acclimatization, ultraviolet (UV) resistance and improved mechanical properties. The thermal property tests have shown that the functional textile had good thermal stability. The functional textile, with a PCM@SiO2 concentration of 30%, was promising, with enthalpies of melting and crystallization of 27.7 J/g and 27.8 J/g, and UV resistance of 77.85. The thermoregulation and ultraviolet protection factor (UPF) value could be maintained after washing 10 times, which demonstrated that the functional textile had durability. With good thermoregulation and UV resistance, the multi-functional textile shows good prospects for applications in thermal comfort and as protective and energy-saving textile.


2021 ◽  
Vol 28 (12) ◽  
pp. 123517
Author(s):  
Yuan Wang ◽  
Xiaoping Li ◽  
Donglin Liu ◽  
Yanming Liu ◽  
Jiahao Xu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Francesco Parisio ◽  
Keita Yoshioka ◽  
Kiyotoshi Sakaguchi ◽  
Ryota Goto ◽  
Takahiro Miura ◽  
...  

AbstractDeveloping high-enthalpy geothermal systems requires a sufficiently permeable formation to extract energy through fluid circulation. Injection experiments above water’s critical point have shown that fluid flow can generate a network of highly conductive tensile cracks. However, what remains unclear is the role played by fluid and solid rheology on the formation of a dense crack network. The decrease of fluid viscosity with temperature and the thermally activated visco-plasticity in rock are expected to change the deformation mechanisms and could prevent the formation of fractures. To isolate the solid rheological effects from the fluid ones and the associated poromechanics, we devise a hydro-fracture experimental program in a non-porous material, polymethyl methacrylate (PMMA). In the brittle regime, we observe rotating cracks and complex fracture patterns if a non-uniform stress distribution is introduced in the samples. We observe an increase of ductility with temperature, hampering the propagation of hydraulic fractures close to the glass transition temperature of PMMA, which acts as a limit for brittle fracture propagation. Above the glass transition temperature, acoustic emission energy drops of several orders of magnitude. Our findings provide a helpful guidance for future studies of hydro-fracturing of supercritical geothermal systems.


Author(s):  
Stefan Loehle ◽  
Fabian Zander ◽  
Martin Eberhart ◽  
Tobias Hermann ◽  
Arne Meindl ◽  
...  

AbstractThis article presents the full operational experimental capabilities of the plasma wind tunnel facilities at the Institute of Space Systems at the University of Stuttgart. The simulation of the aerothermodynamic environment experienced by vehicles entering the atmosphere of Earth is attempted using three different facilities. Utilizing the three different facilities, the recent improvements enable a unique range of flow conditions in relation to other known facilities. Recent performance optimisations are highlighted in this article. Based on the experimental conditions demonstrated a corresponding flight scenario is derived using a ground-to-flight extrapolation approach based on local mass-specific enthalpy, total pressure and boundary layer edge velocity gradient. This shows that the three facilities cover the challenging parts of the aerothermodynamics along the entry trajectory from Low Earth Orbit. Furthermore, the more challenging conditions arising during interplanetary return at altitudes above 70 km are as well covered.


Sign in / Sign up

Export Citation Format

Share Document