relic abundance
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 61)

H-INDEX

20
(FIVE YEARS 3)

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Lucien Heurtier ◽  
Fei Huang ◽  
Tim M.P. Tait

Abstract In the framework where the strong coupling is dynamical, the QCD sector may confine at a much higher temperature than it would in the Standard Model, and the temperature-dependent mass of the QCD axion evolves in a non-trivial way. We find that, depending on the evolution of ΛQCD, the axion field may undergo multiple distinct phases of damping and oscillation leading generically to a suppression of its relic abundance. Such a suppression could therefore open up a wide range of parameter space, resurrecting in particular axion dark-matter models with a large Peccei-Quinn scale fa ≫ 1012 GeV, i.e., with a lighter mass than the standard QCD axion.


2021 ◽  
Vol 2021 (12) ◽  
pp. 039
Author(s):  
Debasish Borah ◽  
Arnab Dasgupta ◽  
Sin Kyu Kang

Abstract We study a dark SU(2) D gauge extension of the standard model (SM) with the possibility of a strong first order phase transition (FOPT) taking place below the electroweak scale in the light of NANOGrav 12.5 yr data. As pointed out recently by the NANOGrav collaboration, gravitational waves (GW) from such a FOPT with appropriate strength and nucleation temperature can explain their 12.5 yr data. We impose a classical conformal invariance on the scalar potential of SU(2) D sector involving only a complex scalar doublet with negligible couplings with the SM Higgs. While a FOPT at sub-GeV temperatures can give rise to stochastic GW around nano-Hz frequencies being in agreement with NANOGrav findings, the SU(2) D vector bosons which acquire masses as a result of the FOPT in dark sector, can also serve as dark matter (DM) in the universe. The relic abundance of such vector DM can be generated in a non-thermal manner from the SM bath via scalar portal mixing. We also discuss future sensitivity of gravitational wave experiments to the model parameter space.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
B. Fu ◽  
S.F. King

Abstract We consider the possibility that dark matter is stabilised by a discrete Z2 symmetry which arises from a subgroup of a U(1)′ gauge symmetry, spontaneously broken by integer charged scalars, and under which the chiral quarks and leptons do not carry any charges. A chiral fermion χ with half-integer charge is odd under the preserved Z2, and hence becomes a stable dark matter candidate, being produced through couplings to right-handed neutrinos with vector-like U(1)′ charges, as in the type Ib seesaw mechanism. We calculate the relic abundance in such a low energy effective seesaw model containing few parameters, then consider a high energy renormalisable model with a complete fourth family of vector-like fermions, where the chiral quark and lepton masses arise from a seesaw-like mechanism. With the inclusion of the fourth family, the lightest vector-like quark can contribute to the dark matter production, enlarging the allowed parameter space that we explore.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Bastián Díaz Sáez ◽  
Patricio Escalona ◽  
Sebastián Norero ◽  
Alfonso Zerwekh

Abstract We explore a simple extension to the Standard Model containing two gauge singlets: a Dirac fermion and a real pseudoscalar. In some regions of the parameter space both singlets are stable without the necessity of additional symmetries, then becoming a possible two-component dark matter model. We study the relic abundance production via freeze-out, with the latter determined by annihilations, conversions and semi-annihilations. Experimental constraints from invisible Higgs decay, dark matter relic abundance and direct/indirect detection are studied. We found three viable regions of the parameter space, and the model is sensitive to indirect searches.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Seungwon Baek

Abstract We study a generic model in which the dark sector is composed of a Majorana dark matter χ1, its excited state χ2, both at the electroweak scale, and a light dark photon Z′ with mz′ ∼ 10−4 eV. The light Z′ enhances the self-scattering elastic cross section χ1χ1 → χ1χ1 enough to solve the small scale problems in the N-body simulations with the cold dark matter. The dark matter communicates with the SM via kinetic mixing parameterized by ϵ. The inelastic scattering process χ1χ1 → χ2χ2 followed by the prompt decay χ2 → χ1Z′ generates energetic Z′. By setting δ ≡ mχ2− mχ1 ≃ 2.8 keV and ϵ ∼ 10−10 the excess in the electron-recoil data at the XENON1T experiment can be explained by the dark-photoelectric effect. The relic abundance of the dark matter can also be accommodated by the thermal freeze-out mechanism via the annihilation χ1χ1(χ2χ2) → Z′Z′ with the dark gauge coupling constant αX ∼ 10−3.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Thomas Biekötter ◽  
María Olalla Olea-Romacho

Abstract We investigate a possible realization of pseudo-Nambu-Goldstone (pNG) dark matter in the framework of a singlet-extended 2 Higgs doublet model (S2HDM). pNG dark matter gained attraction due to the fact that direct-detection constraints can be avoided naturally because of the momentum-suppressed scattering cross sections, whereas the relic abundance of dark matter can nevertheless be accounted for via the usual thermal freeze-out mechanism. We confront the S2HDM with a multitude of theoretical and experimental constraints, paying special attention to the theoretical limitations on the scalar potential, such as vacuum stability and perturbativity. In addition, we discuss the complementarity between constraints related to the dark matter sector, on the one hand, and to the Higgs sector, on the other hand. In our numerical discussion we explore the Higgs funnel region with dark matter masses around 60 GeV using a genetic algorithm. We demonstrate that the S2HDM can easily account for the measured relic abundance while being in agreement with all relevant constraints. We also discuss whether the so-called center-of-galaxy excesses can be accommodated, possibly in combination with a Higgs boson at about 96 GeV that can be the origin of the LEP- and the CMS-excess observed at this mass in the b$$ \overline{b} $$ b ¯ -quark and the diphoton final state, respectively.


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
C. Cazzaniga ◽  
P. Odagiu ◽  
E. Depero ◽  
L. Molina Bueno ◽  
Yu. M. Andreev ◽  
...  

AbstractWe report the results of a search for a new vector boson ($$ A'$$ A ′ ) decaying into two dark matter particles $$\chi _1 \chi _2$$ χ 1 χ 2 of different mass. The heavier $$\chi _2$$ χ 2 particle subsequently decays to $$\chi _1$$ χ 1 and an off-shell Dark Photon $$ A'^* \rightarrow e^+e^-$$ A ′ ∗ → e + e - . For a sufficiently large mass splitting, this model can explain in terms of new physics the recently confirmed discrepancy observed in the muon anomalous magnetic moment at Fermilab. Remarkably, it also predicts the observed yield of thermal dark matter relic abundance. A detailed Monte-Carlo simulation was used to determine the signal yield and detection efficiency for this channel in the NA64 setup. The results were obtained re-analyzing the previous NA64 searches for an invisible decay $$A'\rightarrow \chi \overline{\chi }$$ A ′ → χ χ ¯ and axion-like or pseudo-scalar particles $$a \rightarrow \gamma \gamma $$ a → γ γ . With this method, we exclude a significant portion of the parameter space justifying the muon g-2 anomaly and being compatible with the observed dark matter relic density for $$A'$$ A ′ masses from 2$$m_e$$ m e up to 390 MeV and mixing parameter $$\varepsilon $$ ε between $$3\times 10^{-5}$$ 3 × 10 - 5 and $$2\times 10^{-2}$$ 2 × 10 - 2 .


Author(s):  
Katsuki Tomita

We extend a classically scale invariant model where the electroweak symmetry breaking is triggered by the dynamical chiral symmetry breaking in a hidden QCD sector, and a real singlet scalar [Formula: see text] mediates these two sectors. Our model can explain cosmic inflation without unitarity violation in addition. Slow-roll inflation occurs along a valley in scalar potential. In the original model, the coupling [Formula: see text] between the Higgs field [Formula: see text] and [Formula: see text] is always negative and therefore, the potential has its valleys in [Formula: see text]-[Formula: see text] mixed directions. For large value of the top Yukawa coupling [Formula: see text], the potential along the valley becomes negative since the Higgs quartic coupling [Formula: see text] becomes negative at inflationary scale. Then slow-roll inflation cannot occur. For inflation to definitely occur, we render the coupling [Formula: see text] positive at inflationary scale and consider the [Formula: see text]-inflation case. This is achieved by introducing a new singlet scalar [Formula: see text] with the large coupling [Formula: see text] to [Formula: see text]. By this extension, [Formula: see text] can also always be positive, and we consider this case as the simplest case. We consider inflation with the nonminimal coupling [Formula: see text] between [Formula: see text] and gravity. Although [Formula: see text] is large such as [Formula: see text], unitarity is not violated since couplings between [Formula: see text] and other fields are sufficiently small. [Formula: see text] is odd under a new symmetry [Formula: see text] not to mix with [Formula: see text] regardless of largeness of [Formula: see text]. Because of this symmetry, [Formula: see text] may have its relic abundance [Formula: see text] comparable with the observational value [Formula: see text] of the dark matter relic abundance. However, the spin-independent elastic cross-section [Formula: see text] of [Formula: see text] exceeds the observational bound [Formula: see text] cm2. Hence, we impose the resonance condition [Formula: see text] and reduce [Formula: see text] to much smaller than [Formula: see text]. Constraints from the electroweak scale physics and inflationary scale physics are much strong, and the allowed parameter space is very narrow.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Junjie Cao ◽  
Jingwei Lian ◽  
Yusi Pan ◽  
Di Zhang ◽  
Pengxuan Zhu

Abstract Very recently, a Fermilab report of muon g− 2 showed a 4.2σ discrepancy between it and the standard model (SM) prediction. Motivated by this inspiring result and the increasing tension in supersymmetric interpretation of the anomalous magnetic moment, it is argued that in the general next-to-minimal supersymmetric standard model (GNMSSM), a singlino-dominated neutralino can act as a feasible dark matter (DM) candidate in explaining the discrepancy naturally. In this case, the singlino-dominated DM and singlet-dominated Higgs bosons can form a secluded DM sector with $$ {\overset{\sim }{\chi}}_1^0{\overset{\sim }{\chi}}_1^0 $$ χ ~ 1 0 χ ~ 1 0 → hsAs responsible for the measured DM relic abundance when $$ {m}_{{\overset{\sim }{\chi}}_1^0} $$ m χ ~ 1 0 ≳ 150 GeV and the Yukawa coupling κ is around 0.2. This sector communicates with the SM sector by weak singlet-doublet Higgs mixing, so the scatterings of the singlino-dominated DM with nucleons are suppressed. Furthermore, due to the singlet nature of the DM and the complex mass hierarchy, sparticle decay chains in the GNMSSM are lengthened in comparison with the prediction of the minimal supersymmetric standard model. These characteristics lead to sparticle detection at the Large Hadron Collider (LHC) being rather tricky. This study surveys a specific scenario of the GNMSSM, which extends the ℤ3-NMSSM by adding an explicit μ-term, to reveal the features. It indicates that the theory can readily explain the discrepancy of the muon anomalous magnetic moment without conflicting with the experimental results in DM and Higgs physics, and the LHC searches for sparticles.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Ulrich Haisch ◽  
Giacomo Polesello ◽  
Stefan Schulte

Abstract Pseudo Nambu-Goldstone bosons (pNGBs) are attractive dark matter (DM) candidates, since they couple to the Standard Model (SM) predominantly through derivative interactions. Thereby they naturally evade the strong existing limits inferred from DM direct detection experiments. Working in an effective field theory that includes both derivative and non-derivative DM-SM operators, we perform a detailed phenomenological study of the Large Hadron Collider reach for pNGB DM production in association with top quarks. Drawing on motivated benchmark scenarios as examples, we compare our results to other collider limits as well as the constraints imposed by DM (in) direct detection experiments and the relic abundance. We furthermore explore implications on the viable parameter space of pNGB DM. In particular, we demonstrate that DM direct detection experiments become sensitive to many pNGB DM realisations once loop-induced interactions are taken into account. The search strategies and pNGB DM benchmark models that we discuss can serve as a starting point for dedicated experimental analyses by the ATLAS and the CMS collaborations.


Sign in / Sign up

Export Citation Format

Share Document