cellular receptors
Recently Published Documents


TOTAL DOCUMENTS

311
(FIVE YEARS 60)

H-INDEX

49
(FIVE YEARS 5)

Author(s):  
ABDUL GHAYUM PAPULZAI ◽  
NIKHIYA MANUEL JOHN ◽  
SUDHAKAR MALLA

Humans usually contract dengue by being bitten by arthropods, and more than 3.6 billion people are at risk per year. Although studies are conducted to screen and trace out the possible pathophysiology of the virus, an adequate receptor-based study has not been completed. Understanding how the dengue virus (DV) engraves its landing sites requires identification of such cellular receptors. In many model studies, heparan sulfate (HS) has been reported to act as a DV receptor under various conditions. However, the physiological relevance of these findings remains uncertain. Therefore, it is still unclear whether HS is used by viral strains or not, and if at all used by clinical or non-cell culture-adapted strains of DV. The present review aims to identify relevant experimental evidences that confirm the possible interaction between envelope protein and HS chains. We collected data from a series of studies to conclude the interactive role.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6576
Author(s):  
Malihe Masomian ◽  
Salima Lalani ◽  
Chit Laa Poh

Enterovirus 71 (EV-A71) is one of the predominant etiological agents of hand, foot and mouth disease (HMFD), which can cause severe central nervous system infections in young children. There is no clinically approved vaccine or antiviral agent against HFMD. The SP40 peptide, derived from the VP1 capsid of EV-A71, was reported to be a promising antiviral peptide that targeted the host receptor(s) involved in viral attachment or entry. So far, the mechanism of action of SP40 peptide is unknown. In this study, interactions between ten reported cell receptors of EV-A71 and the antiviral SP40 peptide were evaluated through molecular docking simulations, followed by in vitro receptor blocking with specific antibodies. The preferable binding region of each receptor to SP40 was predicted by global docking using HPEPDOCK and the cell receptor-SP40 peptide complexes were refined using FlexPepDock. Local molecular docking using GOLD (Genetic Optimization for Ligand Docking) showed that the SP40 peptide had the highest binding score to nucleolin followed by annexin A2, SCARB2 and human tryptophanyl-tRNA synthetase. The average GoldScore for 5 top-scoring models of human cyclophilin, fibronectin, human galectin, DC-SIGN and vimentin were almost similar. Analysis of the nucleolin-SP40 peptide complex showed that SP40 peptide binds to the RNA binding domains (RBDs) of nucleolin. Furthermore, receptor blocking by specific monoclonal antibody was performed for seven cell receptors of EV-A71 and the results showed that the blocking of nucleolin by anti-nucleolin alone conferred a 93% reduction in viral infectivity. Maximum viral inhibition (99.5%) occurred when SCARB2 was concurrently blocked with anti-SCARB2 and the SP40 peptide. This is the first report to reveal the mechanism of action of SP40 peptide in silico through molecular docking analysis. This study provides information on the possible binding site of SP40 peptide to EV-A71 cellular receptors. Such information could be useful to further validate the interaction of the SP40 peptide with nucleolin by site-directed mutagenesis of the nucleolin binding site.


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1849
Author(s):  
Nithya Jambunathan ◽  
Carolyn M. Clark ◽  
Farhana Musarrat ◽  
Vladimir N. Chouljenko ◽  
Jared Rudd ◽  
...  

Herpes simplex virus type-1 (HSV-1) and type-2 (HSV-2) are prototypical alphaherpesviruses that are characterized by their unique properties to infect trigeminal and dorsal root ganglionic neurons, respectively, and establish life-long latent infections. These viruses initially infect mucosal epithelial tissues and subsequently spread to neurons. They are associated with a significant disease spectrum, including orofacial and ocular infections for HSV-1 and genital and neonatal infections for HSV-2. Viral glycoproteins within the virion envelope bind to specific cellular receptors to mediate virus entry into cells. This is achieved by the fusion of the viral envelope with the plasma membrane. Similarly, viral glycoproteins expressed on cell surfaces mediate cell-to-cell fusion and facilitate virus spread. An interactive complex of viral glycoproteins gB, gD/gH/gL, and gK and other proteins mediate these membrane fusion phenomena with glycoprotein B (gB), the principal membrane fusogen. The requirement for the virion to enter neuronal axons suggests that the heterodimeric protein complex of gK and membrane protein UL20, found only in alphaherpesviruses, constitute a critical determinant for neuronal entry. This hypothesis was substantiated by the observation that a small deletion in the amino terminus of gK prevents entry into neuronal axons while allowing entry into other cells via endocytosis. Cellular receptors and receptor-mediated signaling synergize with the viral membrane fusion machinery to facilitate virus entry and intercellular spread. Unraveling the underlying interactions among viral glycoproteins, envelope proteins, and cellular receptors will provide new innovative approaches for antiviral therapy against herpesviruses and other neurotropic viruses.


Pathogens ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1199
Author(s):  
Santiago Rendon-Marin ◽  
Carolina Quintero-Gil ◽  
Diego Guerra ◽  
Carlos Muskus ◽  
Julian Ruiz-Saenz

Canine morbillivirus (CDV) is a viral agent that infects domestic dogs and a vast array of wildlife species. It belongs to the Paramyxoviridae family, genus Morbillivirus, which is shared with the Measles virus (MeV). Both viruses employ orthologous cellular receptors, SLAM in mononuclear cells and Nectin-4 in epithelial cells, to enter the cells. Although CDV and MeV hemagglutinin (H) have similar functions in viral pathogenesis and cell tropism, the potential interaction of CDV-H protein with human cellular receptors is still uncertain. Considering that CDV is classified as a multi-host pathogen, the potential risk of CDV transmission to humans has not been fully discarded. In this study, we aimed to evaluate both in silico and in vitro, whether there is a cross-species transmission potential from CDV to humans. To accomplish this, the CDV-H protein belonging to the Colombian lineage was modelled. After model validations, molecular docking and molecular dynamics simulations were carried out between Colombian CDV-H protein and canine and human cellular receptors to determine different aspects of the protein–protein interactions. Moreover, cell lines expressing orthologous cellular receptors, with both reference and wild-type CDV strains, were conducted to determine the CDV cross-species transmission potential from an in vitro model. This in silico and in vitro approach suggests the possibility that CDV interacts with ortholog human SLAM (hSLAM) and human Nectin-4 receptors to infect human cell lines, which could imply a potential cross-species transmission of CDV from dogs to humans.


2021 ◽  
Vol 70 (9) ◽  
Author(s):  
Fernando Ruiz-Jiménez ◽  
Jose Humberto Pérez-Olais ◽  
Chidinma Raymond ◽  
Barnabas J King ◽  
C. Patrick McClure ◽  
...  

Introduction. Zika virus (ZIKV) emerged as a public health concern on the American continent during late 2015. As the number of infected grew so did the concerns about its capability to cause long-term damage especially with the appearance of the congenital Zika syndrome (CZS). Proteins from the TAM family of receptor tyrosine kinases (RTKs) were proposed as the cellular receptors, however, due to the ability of the virus to infect a variety of cell lines different strategies to elucidate the tropism of the virus should be investigated. Hypothesis. Pseudotyping is a powerful tool to interrogate the ability of the glycoprotein (GP) to permit entry of viruses. Aim. We aimed to establish a highly tractable pseudotype model using lenti- and retro-viral backbones to investigate the entry pathway of ZIKV. Methodology. We used different glycoprotein constructs and different lenti- or retro-viral backbones, in a matrix of ratios to investigate production of proteins and functional pseudotypes. Results. Varying the ratio of backbone and glycoprotein plasmids did not yield infectious pseudotypes. Moreover, the supplementation of the ZIKV protease or the substitution of the backbone had no positive impact on the infectivity. We showed production of the proteins in producer cells implying the lack of infectious pseudotypes is due to a lack of successful glycoprotein incorporation, rather than lack of protein production. Conclusion. In line with other reports, we were unable to successfully produce infectious pseudotypes using the variety of methods described. Other strategies may be more suitable in the development of an efficient pseudotype model for ZIKV and other flaviviruses.


2021 ◽  
Vol 16 (9) ◽  
pp. 1934578X2199166
Author(s):  
Feng Guo ◽  
Dongtao Yan ◽  
Zifu Qin ◽  
Souravh Bais

Anxiety is a state that becomesa disorder when a person experiences disproportionate levels of anxiety on a regular basis. This disproportion is also accompanied by excessive nervousness and fear. This study aimed to determine the protective effect of prunin using different anxiety models. Three preclinical anxiety models, elevated plus maze, light/dark, and social interaction, were employed in the study. Albino mice were selected and treated with pruninand other drugs for 7 days to determine their anti-anxiety effect. Thereafter, their behavior was examined using the plus maze, light-dark chamber, and other stimulatory parameters, such asimmobility, sniffing, and crawling during experimentation. Two doses (50 mg/kg and 100 mg/kg, p.o.) of prunin were administered to two separate mice groups. Further, fluoxetine (10 mg/kg; p.o.) was administered to one of the mice groups for 7 days. Thereafter, the levels of neurotransmitters, such as serotonin and GABA, in brain samples were determined. Based on the results, prunin significantly improved the behavior and mobility of animals in all three anxiety models. Further, prunin modulated the release of serotonin and GABA, demonstrating the mechanistic approach it employs to interact with cellular receptors to mimic neurotransmission. The mRNA expression levels of tph2 (5-HT synthesizing enzyme) and slc6a4 (5-HT transporter) were also found to be downregulated in both prunin- and fluoxetine-treated mice brains. Collectively, our findings suggest that prunin could be administered to treat anxiety in mice. However, further studies should be carried out to explore its potential for clinical application.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1512
Author(s):  
Nancy Palmerin ◽  
Farizeh Aalam ◽  
Romina Nabiee ◽  
Murali Muniraju ◽  
Javier Gordon Ogembo ◽  
...  

Kaposi sarcoma-associated herpesvirus (KSHV) is the causative agent of multiple cancers in immunocompromised patients including two lymphoproliferative disorders associated with KSHV infection of B lymphocytes. Despite many years of research into the pathogenesis of KSHV associated diseases, basic questions related to KSHV molecular virology remain unresolved. One such unresolved question is the cellular receptors and viral glycoproteins needed for KSHV entry into primary B lymphocytes. In this study, we assess the contributions of KSHV glycoprotein H (gH) and the cellular receptor DC-SIGN to KSHV infection in tonsil-derived B lymphocytes. Our results show that (1) neither KSHV-gH nor DC-SIGN are essential for entry into any B cell subset, (2) DC-SIGN does play a role in KSHV entry into tonsil-derived B cells, but in all B cell subtypes alternative entry mechanisms exist, (3) KSHV-gH can participate in KSHV entry into centrocytes via a DC-SIGN independent entry mechanism, and (4) in the absence of KSHV-gH, DC-SIGN is required for KSHV entry into centrocytes. Our results provide a first glimpse into the complexity of KSHV entry in the lymphocyte compartment and highlight that multiple subset-dependent entry mechanisms are employed by KSHV which depend upon multiple cellular receptors and multiple KSHV glycoproteins.


2021 ◽  
Vol 10 (14) ◽  
pp. 3185
Author(s):  
Linsey J. F. Peters ◽  
Alexander Jans ◽  
Matthias Bartneck ◽  
Emiel P. C. van der Vorst

Atherosclerosis is the main underlying cause of cardiovascular diseases (CVDs), which remain the number one contributor to mortality worldwide. Although current therapies can slow down disease progression, no treatment is available that can fully cure or reverse atherosclerosis. Nanomedicine, which is the application of nanotechnology in medicine, is an emerging field in the treatment of many pathologies, including CVDs. It enables the production of drugs that interact with cellular receptors, and allows for controlling cellular processes after entering these cells. Nanomedicine aims to repair, control and monitor biological and physiological systems via nanoparticles (NPs), which have been shown to be efficient drug carriers. In this review we will, after a general introduction, highlight the advantages and limitations of the use of such nano-based medicine, the potential applications and targeting strategies via NPs. For example, we will provide a detailed discussion on NPs that can target relevant cellular receptors, such as integrins, or cellular processes related to atherogenesis, such as vascular smooth muscle cell proliferation. Furthermore, we will underline the (ongoing) clinical trials focusing on NPs in CVDs, which might bring new insights into this research field.


2021 ◽  
Vol 2021 ◽  
pp. 1-36
Author(s):  
Javad Sharifi-Rad ◽  
Cristina Quispe ◽  
Muhammad Imran ◽  
Abdur Rauf ◽  
Muhammad Nadeem ◽  
...  

Genistein is an isoflavone first isolated from the brooming plant Dyer’s Genista tinctoria L. and is widely distributed in the Fabaceae family. As an isoflavone, mammalian genistein exerts estrogen-like functions. Several biological effects of genistein have been reported in preclinical studies, such as the antioxidant, anti-inflammatory, antibacterial, and antiviral activities, the effects of angiogenesis and estrogen, and the pharmacological activities on diabetes and lipid metabolism. The purpose of this review is to provide up-to-date evidence of preclinical pharmacological activities with mechanisms of action, bioavailability, and clinical evidence of genistein. The literature was researched using the most important keyword “genistein” from the PubMed, Science, and Google Scholar databases, and the taxonomy was validated using The Plant List. Data were also collected from specialized books and other online resources. The main positive effects of genistein refer to the protection against cardiovascular diseases and to the decrease of the incidence of some types of cancer, especially breast cancer. Although the mechanism of protection against cancer involves several aspects of genistein metabolism, the researchers attribute this effect to the similarity between the structure of soy genistein and that of estrogen. This structural similarity allows genistein to displace estrogen from cellular receptors, thus blocking their hormonal activity. The pharmacological activities resulting from the experimental studies of this review support the traditional uses of genistein, but in the future, further investigations are needed on the efficacy, safety, and use of nanotechnologies to increase bioavailability and therapeutic efficacy.


Sign in / Sign up

Export Citation Format

Share Document