zoonotic risk
Recently Published Documents


TOTAL DOCUMENTS

213
(FIVE YEARS 122)

H-INDEX

24
(FIVE YEARS 5)

Oikos ◽  
2022 ◽  
Author(s):  
Kadambari Deshpande ◽  
Abi T. Vanak ◽  
M. Soubadra Devy ◽  
Jagdish Krishnaswamy

2022 ◽  
Vol 18 (1) ◽  
Author(s):  
Rory Gibb ◽  
Gregory F. Albery ◽  
Nardus Mollentze ◽  
Evan A. Eskew ◽  
Liam Brierley ◽  
...  

Host-virus association data underpin research into the distribution and eco-evolutionary correlates of viral diversity and zoonotic risk across host species. However, current knowledge of the wildlife virome is inherently constrained by historical discovery effort, and there are concerns that the reliability of ecological inference from host-virus data may be undermined by taxonomic and geographical sampling biases. Here, we evaluate whether current estimates of host-level viral diversity in wild mammals are stable enough to be considered biologically meaningful, by analysing a comprehensive dataset of discovery dates of 6571 unique mammal host-virus associations between 1930 and 2018. We show that virus discovery rates in mammal hosts are either constant or accelerating, with little evidence of declines towards viral richness asymptotes, even in highly sampled hosts. Consequently, inference of relative viral richness across host species has been unstable over time, particularly in bats, where intensified surveillance since the early 2000s caused a rapid rearrangement of species' ranked viral richness. Our results illustrate that comparative inference of host-level virus diversity across mammals is highly sensitive to even short-term changes in sampling effort. We advise caution to avoid overinterpreting patterns in current data, since it is feasible that an analysis conducted today could draw quite different conclusions than one conducted only a decade ago.


2021 ◽  
Author(s):  
Stefan J. Kaiser ◽  
Annalisa DeRosa ◽  
Christa Ewers ◽  
Frank Günther

Abstract Purpose: Determinants of virulence in Pseudomonas aeruginosa vary strongly depending on its habitat. In this study, we analyzed these alterations depending on the host organism in isolates cultured from canine ears and compared it to clinical extended-spectrum antibiotic-resistant Pseudomonas aeruginosa isolates (XDR), clinical antibiotic-sensitive (non-XDR) from humans and environmental isolates (EI) analyzed during our first study in 2017. Methods: A total of 22 veterinary isolates cultured from canine ears (VET) were examined for spontaneous biofilm formation, stress response in biofilm formation induced by meropenem, in vitro fitness, susceptibility to human serum and polymorphonuclear leukocytes and the genetically determined virulence factors toxA, exoS, exoT, exoU, exoY, nan1, cif, lasA and lasB.Results: We observed significantly elevated spontaneous biofilm formation and serum susceptibility in VET isolates compared to EI and non-XDR isolates as well as significantly decreased in vitro fitness compared to XDR isolates. The VET isolates resembled most the XDR subgroup of isolates previously cultured from blood. Within the environmental isolates, we observed an increase of spontaneous biofilm formation and exoU presence in isolates cultured from community water samples over hospital water samples to pool samples.Conclusions: Considering the distinct differences in some features of the examined VET isolates, a higher degree of phenotypical adaption can be assumed. Increased biofilm formation seems to be a common and characteristic event in isolates adapted to a specific habitat. Therefore amplification of potentially more virulent Pseudomonas aeruginosa strains in domestic animals may lead to elevated zoonotic risk for example for pet owners.


2021 ◽  
Author(s):  
Ezequiel Andres Vanderhoeven ◽  
Jessica P. Mosmann ◽  
Adrián Díaz ◽  
Cecilia G. Cuffini

Abstract Chlamydias are obligated intracellular Gram-negative bacteria, considered important zoonotic pathogens, broadly present in several bird species and responsible for economic losses in animal production. We analyzed the presence of Chlamydial species with zoonotic risk in farm animals in a highly biodiverse area and with great human circulation, the Argentine, Brazil and Paraguay tri-border area. We surveyed nine farms in an area and nasally swabbed a total of 62 animals. DNA was extracted and specific PCR was performed to identify chlamydial species. We detected Chlamydia spp . in 6.5% (4/62) of the animals tested, positive samples belonged to cattle and none of them showed symptoms of respiratory disease nor had been diagnose with reproductive diseases. Specific nested PCR confirmed two samples belonged to C. pecorum and two to C. psittaci . We report for the first time Chlamydia circulation with zoonotic risk in the region. Surveys in birds and wild mammals could give a better understanding to know what Chlamydial species are circulating in the wild interface. The zoonotic potential should be taking into account as farm workers and the surrounding population could be silent carriers or have respiratory diseases being underdiagnosed, and therefore should be considered in the differential diagnoses.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2446
Author(s):  
Luciano M. Thomazelli ◽  
Juliana A. Sinhorini ◽  
Danielle B. L. Oliveira ◽  
Terezinha Knöbl ◽  
Tatiana C. M. Bosqueiro ◽  
...  

Newcastle disease virus (NDV) can infect over 250 bird species with variable pathogenicity; it can also infect humans in rare cases. The present study investigated an outbreak in feral pigeons in São Paulo city, Brazil, in 2019. Affected birds displayed neurological signs, and hemorrhages were observed in different tissues. Histopathology changes with infiltration of mononuclear inflammatory cells were also found in the brain, kidney, proventriculus, heart, and spleen. NDV staining was detected by immunohistochemistry. Twenty-seven out of thirty-four tested samples (swabs and tissues) were positive for Newcastle disease virus by RT-qPCR test, targeting the M gene. One isolate, obtained from a pool of positive swab samples, was characterized by the intracerebral pathogenicity index (ICPI) and the hemagglutination inhibition (HI) tests. This isolate had an ICPI of 0.99, confirming a virulent NDV strain. The monoclonal antibody 617/161, which recognizes a distinct epitope in pigeon NDV strains, inhibited the isolate with an HI titer of 512. A complete genome of NDV was obtained using next-generation sequencing. Phylogenetic analysis based on the complete CDS F gene grouped the detected isolate with other viruses from subgenotype VI.2.1.2, class II, including one previously reported in Southern Brazil in 2014. This study reports a comprehensive characterization of the subgenotype VI.2.1.2, which seems to have been circulating in Brazilian urban areas since 2014. Due to the zoonotic risk of NDV, virus surveillance in feral pigeons should also be systematically performed in urban areas.


2021 ◽  
Vol 8 (12) ◽  
pp. 304
Author(s):  
Ivana Piredda ◽  
Loris Bertoldi ◽  
Giuseppe Benvenuto ◽  
Bruna Palmas ◽  
Aureliana Pedditzi ◽  
...  

Aim of this study was to evaluate, the presence and diversity of Leptospira spp. in blood and urine samples collected from 175 owned-dogs from Sardinia, Italy. After determination of leptospiral infection by microscopic agglutination test (MAT), urine from MAT-positive dogs were examined by real-time polymerase chain reaction (lipL32 rt-PCR) and then isolated by culture. In order to characterize obtained serovars, positive cultures were then subjected to 16S rRNA and secY sequencing, phylogenetic analysis and Multilocus Sequence Typing (MLST). Results showed that seven dogs (4%; 95% CI: 0–55) had Leptospira DNAs in their urine and five strains were isolated from urine cultures. The three different sequence types (ST17, ST198 and ST24) belonging to Leptospira interrogans genomospecies identified by MLST analyses in this study, confirmed that the leptospiral infection was widespread in Sardinian dogs. We also reported the first characterization of a new Leptospira spp. isolated from urine of one dog living in the study area. Whole genome sequencing and phylogenetic analysis, confirmed that this genospecies was closely related to Leptospira hovindhougenii, an intermediate Leptospira spp. with unknown pathogenicity previously isolated from a rat in Denmark. Further studies are required to clarify whether healthy dogs that shed leptospires in their urine could represent a zoonotic risk for humans in this region.


2021 ◽  
Author(s):  
Xuhui Lin ◽  
Luyao Xin ◽  
Meng Qi ◽  
Minyu Hou ◽  
Shenquan Liao ◽  
...  

Abstract Background Cryptosporidium is one of the most prevalent parasites infecting both birds and mammals. To examine the prevalence of Cryptosporidium species and evaluate the public health significance of domestic chickens in Guangdong Province, Southern China, we analyzed 1001 fecal samples collected from 43 intensive broiler chicken farms from six distinct geographical regions between June 2020 and March 2021. Methods Individual DNAs were subjected to nested PCR-based amplification and sequencing of the small subunit of the nuclear ribosomal RNA gene (SSU rRNA). The 60 kDa glycoprotein gene (pgp60) was performed from all positive SSU rRNA samples to characterise subtypes of C. meleagridis. Results Cryptosporidium infection rates was found to be 13.2%, comprising with infections with C. meleagridis (78/1001, 7.8%), C. baileyi (48/1001, 4.8%) and mixed infections (6/1001, 0.6%). Three subtype families were identified, IIIb, IIIe and IIIg. Six subtypes were identified in broiler chickens, including one novel (IIIgA25G3R1a) and five previously reported (IIIbA23G1R1c, IIIbA24G1R1, IIIbA21G1R1a, IIIeA17G2R1 and IIIeA26G2R1). Within these subtypes, five known subtypes were genetically identical to those identified in humans. Conclusions This is the first report of C. meleagridis in chickens from Guangdong. The frequent occurrence of C. meleagridis in domestic chickens and the common C. meleagridis subtypes identified both in humans and chickens is of public health significance. Our study indicates that broiler chickens represent a potential zoonotic risk for the transmission of Cryptosporidium in this region.


Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2279
Author(s):  
Yuanguo Li ◽  
Xinghai Zhang ◽  
Yuxiu Liu ◽  
Ye Feng ◽  
Tiecheng Wang ◽  
...  

Avian H3N2 influenza virus follows cross-host transmission and has spread among dogs in Asia since 2005. After 2015–2016, a new H3N2 subtype canine influenza epidemic occurred in dogs in North America and Asia. The disease prevalence was assessed by virological and serological surveillance in dogs in China. Herein, five H3N2 canine influenza virus (CIV) strains were isolated from 1185 Chinese canine respiratory disease samples in 2017–2018; these strains were on the evolutionary branch of the North American CIVs after 2016 and genetically far from the classical canine H3N2 strain discovered in China before 2016. Serological surveillance showed an HI antibody positive rate of 6.68%. H3N2 was prevalent in the coastal areas and northeastern regions of China. In 2018, it became the primary epidemic strain in the country. The QK01 strain of H3N2 showed high efficiency in transmission among dogs through respiratory droplets. Nevertheless, the virus only replicated in the upper respiratory tract and exhibited low pathogenicity in mice. Furthermore, highly efficient transmission by direct contact other than respiratory droplet transmission was found in a guinea pig model. The low-level replication in avian species other than ducks could not facilitate contact and airborne transmission in chickens. The current results indicated that a novel H3N2 virus has become a predominant epidemic strain in dogs in China since 2016 and acquired highly efficient transmissibility but could not be replicated in avian species. Thus, further monitoring is required for designing optimal immunoprophylactic tools for dogs and estimating the zoonotic risk of CIV in China.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Xinjin Chen ◽  
Bolin Fan ◽  
Chenlong Fan ◽  
Zhongliang Wang ◽  
Eakapol Wangkahart ◽  
...  

Abstract Backgroud Streptococcus agalactiae is a common colonizer of the rectovaginal tract and lead to infectious diseases of neonatal and non-pregnant adults, which also causes infectious disease in fish and a zoonotic risk as well. Lysine crotonylation (Kcr) is a kind of histone post-translational modifications discovered in 2011. In yeast and mammals, Kcr function as potential enhancers and promote gene expression. However, lysine crotonylation in S. agalactiae has not been studied yet. Methods In this study, the crotonylation profiling of fish pathogen, S. agalactiae was investigated by combining affinity enrichment with LC MS/MS. The Kcr modification of several selected proteins were further validated by Western blotting. Results In the present study, we conducted the proteome-wide profiling of Kcr in S. agalactiae and identified 241 Kcr sites from 675 screened proteins for the first time. Bioinformatics analysis showed that 164 sequences were matched to a total of six definitively conserved motifs, and many of them were significantly enriched in metabolic processes, cellular process, and single-organism processes. Moreover, four crotonylation modified proteins were predicted as virulence factors or to being part of the quorum sensing system PTMs on bacteria. The data are available via ProteomeXchange with identifier PXD026445. Conclusions These data provide a promising starting point for further functional research of crotonylation in bacterial virulence in S. agalactiae.


2021 ◽  
Vol 9 (10) ◽  
pp. 2153
Author(s):  
Maria Alessandra De Marco ◽  
Mauro Delogu ◽  
Marzia Facchini ◽  
Livia Di Trani ◽  
Arianna Boni ◽  
...  

Ecological interactions between wild aquatic birds and outdoor-housed poultry can enhance spillover events of avian influenza viruses (AIVs) from wild reservoirs to domestic birds, thus increasing the related zoonotic risk to occupationally exposed workers. To assess serological evidence of AIV infection in workers operating in Northern Italy at the wildfowl/poultry interface or directly exposed to wildfowl, serum samples were collected between April 2005 and November 2006 from 57 bird-exposed workers (BEWs) and from 7 unexposed controls (Cs), planning three sample collections from each individual. Concurrently, AIV surveillance of 3587 reared birds identified 4 AIVs belonging to H10N7, H4N6 and H2N2 subtypes while serological analysis by hemagglutination inhibition (HI) assay showed recent infections caused by H1, H2, H4, H6, H10, H11, H12, and H13 subtypes. Human sera were analyzed for specific antibodies against AIVs belonging to antigenic subtypes from H1 to H14 by using HI and virus microneutralization (MN) assays as a screening and a confirmatory test, respectively. Overall, antibodies specific to AIV-H3, AIV-H6, AIV-H8, and AIV-H9 were found in three poultry workers (PWs) and seropositivity to AIV-11, AIV-H13—still detectable in October 2017—in one wildlife professional (WP). Furthermore, seropositivity to AIV-H2, accounting for previous exposure to the “extinct” H2N2 human influenza viruses, was found in both BEWs and Cs groups. These data further emphasize the occupational risk posed by zoonotic AIV strains and show the possible occurrence of long-lived antibody-based immunity following AIV infections in humans.


Sign in / Sign up

Export Citation Format

Share Document