reflectivity spectra
Recently Published Documents


TOTAL DOCUMENTS

327
(FIVE YEARS 23)

H-INDEX

32
(FIVE YEARS 4)

2021 ◽  
Vol 19 (12) ◽  
pp. 15-18
Author(s):  
Ghaidaa Jabbar Habi

This study implements the optical characteristics of Poly-Methyl methacrylate (PMMA) polymer before and after doping different percentages of Lithium Fluoride (LiF). Where the specimens were formulated as disk shape with diameter of (2.5 cm) and thickness of (0.148 cm) using Thermal pressing technology. The absorbance and reflectivity spectra were recorded in addition to their coefficients at range (300-1100) nm. Also, the study has included the determination of refraction and real and imaginary part of dielectric constant coefficients.


Author(s):  
Javed Ahmad ◽  
Shoaib Hassan ◽  
Jamshaid Alam Khan ◽  
Umair Nissar ◽  
Hammad Abbas

Double perovskites oxide (DPO) multiferroics La2-xSrxNiMnO6(x=0.0, 0.1, 0.2, 0.4, 0.6) are synthesized by sol-gel technique. The structural, optical and electrical (both DC and AC) properties of La2-xSrxNiMnO6 have been investigated by XRD and FTIR spectroscopy and two-probe resistivity and dielectric measurements as a function of temperature, respectively. The effect of doping of Strontium at A-site in double perovskites is discussed. XRD has revealed the formation of monoclinic structure of La2-xSrxNiMnO6 with space group P21 / n for x=0.0 and P21 for x=0.1, 0.2, 0.4, 0.6. The average crystallite size has been calculated to be in the range 31 to 46 nm as determined by Debye Scherrer equation. Infrared active optical phonons observed from reflectivity spectra have been analysed fitting the theoretical oscillators using Lorentz oscillator model. We have observed several well-resolved phonon modes in La2-xSrxNiMnO6 with increasing dopant concentration. Activation energy calculated using Arrhenius Plot is in the range of 0.31 to 0.18 eV, confirming the semiconducting nature of all samples. The dielectric constant and tangent loss as a function of temperature and frequency are also discussed for these multiferroics.


Plasmonics ◽  
2021 ◽  
Author(s):  
Gaspar Armelles ◽  
Alfonso Cebollada ◽  
Daniel G. Cava ◽  
Julia Alvarez-Malmagro ◽  
Marisela Vélez

AbstractAn approach which allows both electrochemical studies and surface enhanced infrared characterization of electrodeposited Cytochrome C is presented. This approach is based on in-plane disordered arrays of resonant slits engraved in Au substrates using focused ion beam. For light-polarized perpendicular to the slit, the reflectivity spectra of the slit arrays show dips related to the excitation of the slit plasmon resonance, whose position depends on the slit length. Due to the presence of the continuous Au layer around the slits, the very same substrates can be used to perform electrochemical studies. By varying the slit length, we have tuned the plasmon resonance to match the absorption bands of electrodeposited Cytochrome C, demonstrating the detection of minute amounts of this protein, all the way down to a single monolayer.


2021 ◽  
Author(s):  
Akshay Rao ◽  
Raj Pandya ◽  
Richard Chen ◽  
Qifei Gu ◽  
Jooyoug Sung ◽  
...  

Abstract Exciton-polaritons (EPs) are quasiparticles formed by the hybridization of excitons with light modes. As organic semiconductors sustain stable excitons at room-temperature, these materials are being actively studied for room temperature polaritonic devices1–3. This is typically in the form of cavity-based systems, where molecules are confined between metallic or dielectric mirrors 4–6 or in a plasmonic gap 7,8. In such systems strong light-matter coupling gives rise to polariton splittings on the order of 200 to 300 meV 6. A wide range of phenomena have been demonstrated in cavity-polariton systems including super-fluidity9, precisely controlled chemical reactions10 and long-range energy propagation11. Here, using a range of chemically diverse model organic systems we show that interactions between excitons and moderately confined photonic states within the (thin) film can lead to the formation of EPs, with a defined lifetime, even in the absence of external cavities. We demonstrate the presence of EPs via angular dependent splittings in reflectivity spectra on the order of 30 meV and collective emission from ~5 ×107 coupled molecules. Additionally, we show that at room temperature these EPs can transport energy up to ~270 nm at velocities of ~5 ×106 m s-1. This propagation velocity and distance is sensitive to, and can be tuned by, the refractive index of the external environment. However, although sensitive to the nanoscale morphology the formation of the exciton-polariton states is a general phenomenon, independent of underlying materials chemistry, with the principal material requirements being a high oscillator strength per unit volume and low disorder. These results and design rules will enable the harnessing of EP effects for a new application in optoelectronics, light harvesting 9,12,13 and cavity controlled chemistry without the limiting requirement of an external cavity.


2021 ◽  
Vol 47 (2) ◽  
pp. 2450-2455
Author(s):  
Aihong Yang ◽  
Ying Tang ◽  
Jie Li ◽  
Weishuang Fang ◽  
Qianbiao Du ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
A. Di Cicco ◽  
G. Polzoni ◽  
R. Gunnella ◽  
A. Trapananti ◽  
M. Minicucci ◽  
...  

Abstract Ultrafast optical reflectivity measurements of silicon, germanium, and gallium arsenide have been carried out using an advanced set-up providing intense subpicosecond pulses (35 fs FWHM, $$\lambda $$ λ = 400 nm) as a pump and broadband 340–780 nm ultrafast pulses as a white supercontinuum probe. Measurements have been performed for selected pump fluence conditions below the damage thresholds, that were carefully characterized. The obtained fluence damage thresholds are 30, 20.8, 9.6 mJ/$$\hbox {cm}^2$$ cm 2 for Si, Ge and GaAs respectively. Ultrafast reflectivity patterns show clear differences in the Si, Ge, and GaAs trends both for the wavelength and time dependences. Important changes were observed near the wavelength regions corresponding to the $$E_1$$ E 1 , $$E_1+\Delta $$ E 1 + Δ singularities in the joint density of states, so related to the peculiar band structure of the three systems. For Ge, ultrafast reflectivity spectra were also collected at low temperature (down to 80 K) showing a shift of the characteristic doublet peak around 2.23 eV and a reduction of the recovery times.


Micromachines ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 848 ◽  
Author(s):  
Kanta Mochizuki ◽  
Mako Sugiura ◽  
Hirofumi Yogo ◽  
Stefan Lundgaard ◽  
Jingwen Hu ◽  
...  

Metasurfaces of gold (Au) nanoparticles on a SiO2-Si substrate were fabricated for the enhancement of second harmonic generation (SHG) using electron beam lithography and lift-off. Triangular Au nanoprisms which are non-centro-symmetric and support second-order nonlinearity were examined for SHG. The thickness of the SiO2 spacer is shown to be an effective parameter to tune for maximising SHG. Electrical field enhancement at the fundamental wavelength was shown to define the SHG intensity. Numerical modeling of light enhancement was verified by experimental measurements of SHG and reflectivity spectra at the normal incidence. At the plasmonic resonance, SHG is enhanced up to ∼3.5 × 103 times for the optimised conditions.


Sign in / Sign up

Export Citation Format

Share Document