acinetobacter pittii
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 34)

H-INDEX

15
(FIVE YEARS 3)

Zoonoses ◽  
2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Kai Song ◽  
Yuxin Ji ◽  
Surong Sun ◽  
Xihong Yue ◽  
Cheng Wang ◽  
...  

Background: Ticks are a major arthropod vector of zoonotic diseases affecting both humans and domestic animals worldwide. Thus, studying tick microbiota would aid in understanding of the potential threats posed by ticks. Methods: Approximately 8,000 unfed ticks, identified as Dermacentor nuttalli, were collected from the sylvosteppe in the western Tianshan mountains. To investigate their potential pathogens, we divided the ticks into 36 groups of 200–300 individuals each for examination with culturomics and 16S rDNA amplicon sequencing. Results: A total of 237 bacterial genera were identified with the two methods. Culturomics identified 46 bacterial species from 23 genera, predominantly Pseudomonas, Pantoea, and Bacillus, whereas 16S rDNA sequencing identified 461 OTUs from 233 genera, predominantly Pseudomonas (53.8%), Coxiella (17.2%), and Pantoea (6.4%). Coxiella, Rickettsia, and ten other genera were discovered only by sequencing, because optimal cultivating conditions were not used for their isolation, whereas Arthrobacter and three other genera were discovered only through culturomics. Conclusions: Several of the identified bacteria, such as line-related sepsis-causing Delftia acidovorans and the pneumonia agent Acinetobacter pittii, can cause human diseases. Thus, both sequencing and culturomics methods are crucial for comprehensive understanding of the microbiota of D. nuttalli.


Author(s):  
Yuqian Tang ◽  
Chendi Liu ◽  
Jiguo Yang ◽  
Xian Peng

Abstract Zearalenone (ZEA), a non-steroidal estrogenic mycotoxin produced by multiple Fusarium species, contaminates cereals and threatens the health of both humans and animals by inducing hepatotoxicity, immunotoxicity, and genotoxicity. A new alkali tolerant enzyme named Ase, capable of degrading ZEA without H2O2, was derived from Acinetobacter sp. SM04 in this study. The Ase gene shares 97% sequence identity with hypothetical proteins from Acinetobacter pittii strain WCHAP 100004 and YMC 2010/8/T346 and Acinetobacter calcoaceticus PHEA-2, respectively. Based on the Acinetobacter genus database, the gene encoding Ase was cloned and extracellularly expressed in E. coli BL21. After degrading 88.4% of ZEA (20 μg/mL), it was confirmed through MCF-7 cell proliferation assays that Ase can transform ZEA into a non-estrogenic toxic metabolite. Recombinant Ase (molecular weight: 28 kDa), produced by E. coli BL21/pET32a(+)-His-Ase, was identified as an oxygen-utilizing and cytochrome-related enzyme with optimal activity at 60 °C and pH 9.0.


2021 ◽  
Vol 10 (42) ◽  
Author(s):  
B. H. Saunders ◽  
G. K. K. Lai ◽  
S. D. J. Griffin ◽  
F. C. C. Leung

Acinetobacter pittii is widespread in the environment, and the Acinetobacter calcoaceticus -baumannii complex, to which it belongs, is a major cause of hospital-acquired pneumonia and bacteremia. A. pitti BHS4 was isolated from an air-conditioning unit in Hong Kong and its complete genome sequence (3,901,980 bp; GC content, 38.79%) established through hybrid assembly.


2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Sadhana Venkatesh ◽  
Sandeep Suryan ◽  
Nagananda Govinahalli Shivashankara ◽  
Swetha Seshagiri

Soil is a dynamic ecosystem which provides support to plant life. Microorganisms inhabiting the rhizosphere region of soil play a key role in agriculture by promoting the exchange of plant nutrients and reducing the application of chemical fertilizers to a large extent. Engineering of rhizospheric region through exploitation of specific microorganisms leads to higher microbial diversity in the soil which in turn plays a significant role in maintaining the soil health. The present work envisages the isolation, screening and biochemical profiling of potent plant growth promoting rhizobacteria from various rhizospheric soils in and around Bangalore. Sixty isolates from rhizospheric region of fourteen different agricultural soils were screened for plant growth promoting traits such as phosphate solubilization, siderophore production, Ammonia, HCN & Phytohormone production. Twelve isolates that exhibited plant growth promotional traits were further subjected to screening for drought and salt tolerance. Among the twelve isolates, four potential isolates namely Serratia marcescens, Pseudomonas aeruginosa and Acinetobacter pittii were identified based on biochemical methods and 16SrRNA sequencing.


Author(s):  
Sophia Wolf ◽  
Elisabeth Barth-Jakschic ◽  
Karolin Birkle ◽  
Baris Bader ◽  
Matthias Marschal ◽  
...  

Two isolates of a non-fermenting, Gram-negative bacterial strain were cultured from two throat swabs that were taken from a pair of twins during routine microbiological surveillance screening. As these isolates could not be unambiguously identified using routine diagnostic methods, whole genome sequencing was performed followed by phylogenetic analysis based on the rpoB gene sequence and by whole genome datasets. The two strains compose a separate branch within the clade formed by the Acinetobacter calcoaceticus–baumannii (ACB) complex with Acinetobacter pittii CIP 70.29T as the most closely related species. The average nucleotide identity compared to all other species of the ACB complex was below 94.2% and digital DNA–DNA hybridization values were less than 60%. Biochemical characteristics confirm affiliation to the ACB complex with some specific phenotypic differences. As a result of the described data, a new Acinetobacter species is introduced, for which the name Acinetobacter geminorum sp. nov. is proposed. The type strain is J00019T with a G+C DNA content of 38.8 mol% and it is deposited in the DSMZ Germany (DSM 111094T) and CCUG Sweden (CCUG 74625T).


2021 ◽  
Vol 10 (39) ◽  
Author(s):  
Yuki Matsumoto ◽  
Arata Sakiyama ◽  
Taishi Tsubouchi ◽  
Masato Suzuki ◽  
Makoto Niki ◽  
...  

Acinetobacter pittii isolate OCU_Ac17 was obtained from the venous blood of a patient at a hospital in Japan. We present its complete 4.108-Mbp genome sequence (1 chromosome plus 3 plasmids), analyzed by combining long-read (Flongle) and short-read (MiniSeq) sequencing.


Author(s):  
C.M. Reena Josephine ◽  
Jibu Thomas

Background: Acinetobacter is an aerobic gram negative, non-spore forming, oxidase negative, catalase positive, non-motile encapsulated coccobacilli. They are ubiquitous in nature mostly isolated from soil, water, food, sewage, animal and human skin, marine water and rhizosphere of maize and wheat. The present study was focused on isolation and characterization of a native strain of rhizospheric Acinetobacter for plant growth promoting ability through different microbiological and morphometric parameters under greenhouse conditions. Methods: Rhizosphere soil samples were collected from maize fields and processed as per the standard microbiological procedure. The morphology was reconfirmed through scanning electron microscopy. DNA extraction was performed by using al. Two sets of primers (universal and specific for H. pylori) were used to amplify the 16S ribosomal gene. Sanger sequencing was applied and the resulted sequences were matched with the sequences of the National Center for Biotechnology Information (NCBI) nucleotide database. The evolutionary aspects were analyzed using MEGA7 software. Result: The strain exhibited plant growth promoting attributes of ammonia generation, inorganic and organic phosphate solubilization 1-aminocyclopropane-1-carboxylate deaminase activity. The strain was identified as Acinetobacter pittii through 16S rRNA sequencing and was designated as Acinetobacter pittii strain F2 5 with the accession number KM677194. Scanning electron microscopy was carried out to reconfirm the morphology of the strain. Under laboratory and green house conditions the strain improved the shoot and root length and its biomass of the treated maize seedlings as compared to the uninoculated control underscoring the plant growth potential of these strains in sustainable agricultural practices.


2021 ◽  
Vol 12 ◽  
Author(s):  
Donglan He ◽  
Wenjie Wan

Phosphorus (P) availability is a major restriction to crop production, and phosphate-solubilizing bacteria (PSBs) in soils are responsible for P turnover. However, it remains unknown whether the application of PSB can facilitate both inorganic and organic P transformation and enhance function of plant rhizosphere bacteria. In this study, we applied Illumina MiSeq sequencing, plate-colony counting, quantitative PCR, and multiple ecological analyses. We found that the inoculation of PSB Acinetobacter pittii gp-1 significantly promoted the growth of soybean represented by better vegetation properties (e.g., plant height and root P) and increased activities of phosphatase (4.20–9.72 μg/g/h) and phytase (0.69–1.53 μmol/g/day) as well as content of indole acetic acid (5.80–40.35 μg/g/h). Additionally, the application of strain A. pittii gp-1 significantly increased abundances of both inorganic and organic P-cycling-related genes (i.e., phoD, bpp, gcd, and pstS). More importantly, the application of A. pittii gp-1 could increase the function represented by P-cycling-related enzymes (e.g., phosphotransferase) of rhizosphere bacterial community based on functional profiling. To our knowledge, this is the first report that the application of PSB A. pittii promotes inorganic and organic P utilization and increases the function of rhizosphere bacterial community. Therefore, the PSB A. pittii gp-1 could be a good candidate for the promotion of soybean growth.


Life ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 960
Author(s):  
Camilla Urbaniak ◽  
Tristan Grams ◽  
Christopher E. Mason ◽  
Kasthuri Venkateswaran

Bacteria are able to adapt and survive in harsh and changing environments through many mechanisms, with one of them being horizontal gene transfer (HGT). This process is one of the leading culprits in the spread of antimicrobial resistance (AMR) within bacterial communities and could pose a significant health threat to astronauts if they fell ill, especially on long-duration space missions. In order to better understand the degree of HGT activity that could occur in space, biosafety level-2, donor and recipient bacteria were co-cultured under simulated microgravity (SMG) on Earth with concomitant 1G controls. Two AMR genes, blaOXA-500 and ISAba1, from the donor Acinetobacter pittii, were tracked in four recipient strains of Staphylococcus aureus (which did not harbor those genes) using polymerase chain reaction. All four S. aureus strains that were co-cultured with A. pittii under SMG had a significantly higher number of isolates that were now blaOXA-500- and ISAba1-positive compared to growth at 1G. The acquisition of these genes by the recipient induced a phenotypic change, as these isolates were now resistant to oxacillin, which they were previously susceptible to. This is a novel study, presenting, for the first time, increased HGT activity under SMG and the potential impact of the space environment in promoting increased gene dissemination within bacterial communities.


2021 ◽  
Vol 10 (32) ◽  
Author(s):  
A. O. Izotova ◽  
K. O. Petrova ◽  
A. A. Korzhenkov ◽  
A. A. Bavtushnyi ◽  
K. V. Sidoruk ◽  
...  

Acinetobacter pittii strain B-3780 is a prospective degrader of oil and methanol, isolated from industrial wastewater. Here, we present the draft genome sequence of strain B-3780, obtained using Illumina sequencing of the fragment genomic library.


Sign in / Sign up

Export Citation Format

Share Document