solution procedure
Recently Published Documents


TOTAL DOCUMENTS

1052
(FIVE YEARS 163)

H-INDEX

48
(FIVE YEARS 4)

2021 ◽  
Vol 16 (4) ◽  
pp. 273-276
Author(s):  
Bernard F. Lamond ◽  
Luckny Zephyr

Simple estimators were given in (Kachiashvili & Topchishvili, 2016) for the lower and upper limits of an irregular right-angled triangular distribution together with convenient formulas for removing their bias. We argue here that the smallest observation is not a maximum likelihood estimator (MLE) of the lower limit and we present a procedure for computing an MLE of this parameter. We show that the MLE is strictly smaller than the smallest observation and we give some bounds that are useful in a numerical solution procedure. We also present simulation results to assess the bias and variance of the MLE.


Author(s):  
Johan Lorentzon ◽  
Johan Revstedt

The stability of relaxation techniques has been studied for strongly coupled fluid-structure interaction (FSI) with application to a cantilever immersed in channel flow. The fluid is governed by Navier-Stokes equations for incompressible flow condition using turbulence modelling and the solid is governed by the equation of motion with compressible material modelling. The applied kinematic description is Lagrangian for the solid and Eulerian for the fluid. The coupling of the state solvers is achieved by the Arbitrary Lagrange-Euler procedure which involves a mesh motion solver and the FSI procedure is stabilised by relaxation. It is shown that the stability can be related to the frequency shift caused by FSI and they follow the same rate for the shape factor of the structure with an offset. This correlates well to theoretical results but also show that for given mesh resolution, all relaxations fail for sufficient high-frequency shift. We also propose a continuation technique to stabilise the solution near the instability region, which also improves the efficiency and can be integrated easily for the black-box FSI solution procedure.


2021 ◽  
Author(s):  
Samaa Adel Ibrahim Hussein ◽  
Fayez Wanis Zaki ◽  
Mohammed Ashour

Abstract In recent years, SDN technology has been applied to several networks such as wide area network (WAN). IT provides many benefits, such as: enhancing data transfer, promoting Application performance and reducing deployment costs. Software Defined-WAN networks lack studies and references. This paper introduced a system for SD-WAN network using PH/PH/C queues. It concentrates on the study of algebraic estimates the probability distribution of the system states. The Matrix-Geometric solution procedure of a phase type distribution queue with first-come first-served discipline is used.


PAMM ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Franz Bamer ◽  
Nima Shirafkan ◽  
Xiaodan Cao ◽  
Abdelbacet Oueslati ◽  
Marcus Stoffel ◽  
...  

2021 ◽  
Vol 945 (1) ◽  
pp. 012005
Author(s):  
K. S. Ong ◽  
K. Gobi ◽  
C. H. Lim ◽  
S. Naghavi ◽  
S. Baljit

Abstract The temperature of a PV panel rises during operation which affects its power output. A PV panel is similar to a flat plate solar collector. This paper presents a simple theoretical heat transfer resistance model and a solution procedure to predict the absorber plate surface temperature of the solar collector. The model consisted of a rectangular cross-section steel duct placed inclined at an angle to the horizontal and exposed to solar radiation. The heat absorbed on the top surface of the plate is transmitted by conduction through the plate and heats the air in the duct. This creates a natural buoyancy effect which induces a natural convection air flow rate. A simple one-dimensional theoretical model of the solar collector with the thermal resistances of the various components is proposed. Simulated results of plate temperature and induced air flow velocity are presented.


Author(s):  
Ali Belhocine ◽  
Nadica Stojanovic ◽  
Oday Ibraheem Abdullah

In this paper, steady laminar boundary layer flow of a Newtonian fluid over a flat plate in a uniform free stream was investigated numerically when the surface plate is heated by forced convection from the hot fluid. This flow is a good model of many situations involving flow over fins that are relatively widely spaced. All the solutions given here were with constant fluid properties and negligible viscous dissipation for two-dimensional, steady, incompressible laminar flow with zero pressure gradient. The similarity solution has shown its efficiency here to transform the governing equations of the thermal boundary layer into a nonlinear, third-order ordinary differential equation and solved numerically by using 4th-order Runge-Kutta method which in turn was programmed in FORTRAN language. The dimensionless temperature, velocity, and all boundary layer functions profiles were obtained and plotted in figures for different parameters entering into the problem. Several results of best approximations and expressions of important correlations relating to heat transfer rates were drawn in this study of which Prandtl’s number to the plate for physical interest was also discussed across the tables. The same case of solution procedure was made for a plane plate subjected to other thermal boundary conditions in a laminar flow. Finally, for the validation of the treated numerical model, the results obtained are in good agreement with those of the specialized literature, and comparison with available results in certain cases is excellent.


Author(s):  
Erhan Ferhatoglu ◽  
Stefano Zucca ◽  
Daniele Botto ◽  
Jury Auciello ◽  
Lorenzo Arcangeli

Abstract Friction dampers are one of the most common secondary structures utilized to alleviate excessive vibration amplitudes in turbo-machinery applications. In this paper, the dynamic behavior of the turbine bladed disks coupled with one of the special damper designs, the so-called Mid-Span Dampers (MSDs) that is commonly used in steam turbines of Baker Hughes Company, is thoroughly studied. Friction between the blade and the damper is modeled through a large number of contact nodes by using 2D contact elements with a variable normal load. In the solution procedure, the coupled static/dynamic Harmonic Balance approach is utilized for the first time in the assessment of the dissipation capability of MSDs, computationally shown by predicting the forced response levels of the system at different resonances. Moreover, it is demonstrated that the nonlinear dynamic response is non-unique and it may vary considerably even if all the user-controlled inputs are kept identical. This phenomenon is a novel observation for MSDs and it is explained by an uncertainty present in the contact forces. Contact conditions corresponding to multiple responses are also investigated to unveil the different kinematics of the damper under the same nominal conditions.


2021 ◽  
Author(s):  
Alfonso Santiago ◽  
Constantine Butakoff ◽  
Beatriz Eguzkitza ◽  
Richard A Gray ◽  
Karen May-Newman ◽  
...  

Background: left ventricular assist devices (LVADs) are implantable pumps that act as a life support therapy for patients with severe heart failure. Despite improving the survival rate, LVAD therapy can carry major complications. Particularly, the flow distortion introduced by the LVAD in the left ventricle (LV) may induce thrombus formation. While previous works have used numerical models to study the impact of multiple variables in the intra-LV stagnation regions, a comprehensive validation analysis has never been executed. The main goal of this work is to present a model of the LV-LVAD system and to design and follow a verification, validation and uncertainty quantification (VVUQ) plan based on the ASME V&V40 and V&V20 standards to ensure credible predictions. Methods: The experiment used to validate the simulation is the SDSU cardiac simulator, a bench mock-up of the cardiovascular system that allows mimicking multiple operation conditions for the heart-LVAD system. The numerical model is based on Alya, the BSC's in-house platform for numerical modelling. Alya solves the Navier-Stokes equation with an Arbitrarian Lagrangian-Eulerian (ALE) formulation in a deformable ventricle and includes pressure-driven valves, a 0D Windkessel model for the arterial output and a LVAD boundary condition modeled through a dynamic pressure-flow performance curve. The designed VVUQ plan involves: (a) a risk analysis and the associated credibility goals; (b) a verification stage to ensure correctness in the numerical solution procedure; (c) a sensitivity analysis to quantify the impact of the inputs on the four quantities of interest (QoIs) (average aortic root flow, maximum aortic root flow, average LVAD flow, and maximum LVAD flow); (d) an uncertainty quantification using six validation experiments that include extreme operating conditions. Results: Numerical code verification tests ensured correctness of the solution procedure and numerical calculation verification showed small numerical errors. The total Sobol indices obtained during the sensitivity analysis demonstrated that the ejection fraction, the heart rate, and the pump performance curve coefficients are the most impactful inputs for the analysed QoIs. The Minkowski norm is used as validation metric for the uncertainty quantification. It shows that the midpoint cases have more accurate results when compared to the extreme cases. The total computational cost of the simulations was above 100 [core-years] executed in around three weeks time span in Marenostrum IV supercomputer. Conclusions: This work details a novel numerical model for the LV-LVAD system, that is supported by the design and execution of a VVUQ plan created following recognised international standards. We present a methodology demonstrating that stringent VVUQ according to ASME standards is feasible but computationally expensive.


2021 ◽  
Author(s):  
Yan-Kuen Wu ◽  
Ching-Feng Wen ◽  
Yuan-Teng Hsu ◽  
Ming-Xian Wang

Abstract Fuzzy relational inequalities composed by the min-product operation are established to model the optimal pricing with fixed priority in a single product supply chain system. The solution algorithm has been proposed for solving such an optimization problem and finding the optimal solution (is called lexicographic maximum solution). In this study, a novel approach is proposed to finding the optimal pricing with fixed priority in a single product supply chain system. This approach is based on new properties of solution set in a min-product fuzzy relational inequality. These new properties allow us directly determine the optimal value of variable without many duplicate checks in the solution procedure. A numerical example is provided to illustrate the procedure.


2021 ◽  
Vol 6 ◽  
pp. 122-128
Author(s):  
Sergey Smirnov ◽  
◽  

The problem of design of experiment with resource constraints is investigated. For a complex system intended for experimental research, before using the well known advanced methods of factorial design, you must first create a simplified mathematical model that represents an incomplete abbreviated description of the system. At the same time, on this simplification from all objectively existing independent parameters of the system remain only the most important parameters, which is a forced procedure due to the natural limitations of the resources available to perform the experimental study. The same constraints limit the number of values assigned to each of the parameters (factor levels number). The article is devoted to the modification of the existing method of discretization of such a model with a rational choice of discretization parameters in accordance with the existing limitations, but with an extremely unreliable in terms of convergence iterative solution procedure. The main ideas of the modified approach are as follows: 0) The choice of the number of levels of factors is proportional to the importance of the relevant parameters and the reduction to the problem of finding a fixed point (as in the known method). 1) Probability partition (instead of partition into equal length intervals) for discretization and selection of representative values of the parameter, which allows to find an exact simple expression for its Shannon entropy. 2) Transition from multi- to one-parameter (coefficient of proportionality as an indicator of parameterization) representation of nonlinear mapping, its decomposition and simplification of the iterative process. 3) Finding the initial value of the coefficient of proportionality for a factor with average relevance and calculations for other factors, followed by iterative refinement. The iterative process is guaranteed to coincide, because the consideration of small and large values of the scalar parameter allows us to use the theorem on the intermediate value of a continuous function. Then, with the help of the developed procedure, two tasks on the assignment of the number of factor levels for situations with small and large resource constraints are solved, the corresponding complications in the calculations and ways to overcome them are indicated.


Sign in / Sign up

Export Citation Format

Share Document