cladding panels
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 29)

H-INDEX

10
(FIVE YEARS 1)

2022 ◽  
pp. 136943322110572
Author(s):  
Xun Chong ◽  
Pu Huo ◽  
Linlin Xie ◽  
Qing Jiang ◽  
Linbing Hou ◽  
...  

A new connection measure between the precast concrete (PC) cladding panel and PC frame structure is proposed to realize a new kind of isostatic frame-cladding system. Three full-scale PC wall-frame substructures were tested under the quasi-static load. These substructures included a bare wall-frame specimen, a specimen with a cladding panel that has no opening, and a specimen with a cladding panel that has an opening in it. The damage evolution, failure mode, load-bearing capacity, deformation capacity, and energy dissipation capacity of three specimens were compared. The results indicated that the motions of the cladding panels and the main structures were uncoupled through the relative clearance of the bottom connections, and three specimens exhibited approximately identical failure modes and seismic performance. Thus, the reliability of this new isostatic system was validated.


2021 ◽  
Vol 7 ◽  
Author(s):  
Lorenzo De Stefani ◽  
Roberto Scotta

Recent earthquakes in southern Europe highlighted that the connections of cladding panels to R.C. frames in precast buildings had a major role in the structural collapse. For this reason, there is an urgent need for a review of the design methods for these connections as well as for an improvement in the manufacturing technology. This article aimed to assess the efficiency of dissipative panel-to-structure and roof connections in R.C. precast buildings. A parametric study consisting of linear and non-linear analyses on one case-study building is performed. Different sensitivity analyses are performed varying their mechanical properties (i.e., stiffness, strength, and ductility) to analyze the behavior of the CP/frame connections. The study focuses on dissipative connections with an elastic–plastic behavior, placed between cladding panels (CPs) and frames in precast buildings with stacked horizontal cladding panels. The introduction of dissipative CP/frame connections implies the inclusion of panels in the global seismic resisting system. The “panels + frame” system highlights a high stiffness until the yield strength of the CP/frame connections is reached. The results, obtained from non-linear dynamic analyses (NLDAs), clearly show how the proposed connection improves the structural seismic performance. By contrast, this is no longer true for R.C. precast structures with flexible diaphragms, especially for intermediate columns, far from panels aligned to seismic action. In this case, significant and unexpected axial forces arise on out-of-plane connections between panels and columns. The integration of an efficient diaphragm is essential to prevent these critical issues both on intermediate columns and CP/column connections; it enables the dissipative capacity of the “panels + frame” system, and it significantly limits the forces and displacements of intermediate alignments. Unfortunately, the achievement of a rigid diaphragm is not always feasible in precast buildings. A possible alternative to activate dissipative capacities of the roof diaphragm with limited in-plane stiffness is the use of dissipative connections linking roof beams and main beams. The solutions described in this article can be applied both in the design of new buildings and for the seismic upgrading of existing ones with easy-to-install and low-impact applications.


Buildings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 400
Author(s):  
Liana Ostetto ◽  
Romain Sousa ◽  
Hugo Rodrigues ◽  
Paulo Fernandes

The latest earthquakes in Europe exposed some critical problems in the connections of cladding panels in industrial precast reinforced concrete (PRC) structures. These connections did not perform as desired, causing the panels to fall, leading to significant nonstructural damage that resulted in the loss of human life and significant socio-economic impacts due to the interruption of business. Furthermore, in addition to the behavior of the cladding system itself, it is still not clear to what extent it can influence the overall seismic performance of the main structure. Making use of a simplified macroelement, the present study assesses the seismic performance of commonly employed cladding-to-structure connections, as well as the interaction of cladding panels with industrial PRC buildings. The analyses were carried out considering a PRC building representative of a Portuguese industrial park, studied with and without cladding panels. The seismic behavior of the structure was assessed considering both nonlinear static and dynamic procedures.


2021 ◽  
pp. 809-819
Author(s):  
Payam Sadrolodabaee ◽  
S. M. Amin Hosseini ◽  
Monica Ardunay ◽  
Josep Claramunt ◽  
Albert de la Fuente

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3518
Author(s):  
Mateusz Kozicki ◽  
Katarzyna Guzik ◽  
Halina Deptuła ◽  
Justyna Tomaszewska

One of the existing priorities of the European Union is to search for rational waste management and to keep such waste in the economic cycle, while meeting the highest safety requirements. The paper presents the results of environmental tests of composites based on the polyethylene (rPE) and polypropylene (rPP) matrix and reinforced with cellulose fibres (newsprint, NP). Raw materials were obtained by recycling post-consumer waste such as beverage bottles and newsprint. The composites were tested for their potential use as materials in cladding panels and acoustic barriers. Given that normative documents for these products do not define specific environmental requirements, the composites were tested for the release of dangerous substances, such as anions of inorganic compounds, heavy metals, volatile organic compounds (VOCs), and their impact on the environment. A detailed in-depth analysis of the mechanisms of release of substances (diffusion, dissolution, surface leaching and depletion) from the rPP/NP composite into surface water, groundwater and soil was carried out. In turn, emission of VOCs from the rPE (low-density:high-density (LD:HD)—50:50) and rPE (LD:HD—30:70) composites into indoor air was also carried out. Raw materials in the form of granulates and loose cellulose fibres, used to produce the composites, were also tested for their environmental impact.


Author(s):  
Muhammad Tayyab Naqash

Different materials such as glass and composite cladding panels are common in the façade industry due to their architectural appearance. The direct sun rays enter the building and might produce discomfort to the occupants, especially in office and institutional buildings. Nowadays, perforated panels are widely used in facades and becoming more popular in the middle east. These panels are a formal exploration inspired by the Islamic patterns used in traditional Mashrabiya. This paper provides an overview of the application of Mashrabiya "perforated panels" and present structural assessment using software codes such as Robot and SAP2000 for vertical and horizontal installed cases. These panels are fabricated in different sizes with different thicknesses depends on their applications and uses. In this paper, rectangular, square fixed at the roof and vertically fixed panels are assessed. These are usually supported by steel or aluminium tubes designed for a wind load specified by project specifications. The cases presented here for the perforated panels arechecked for the induced stresses and deflections obtained from the numerical model using shell elements. The adopted framing systems and fixing detailing has been found satisfactory according to different acceptance criterion. The paper gives helpful design tools for the façade engineers.


2021 ◽  
Vol 7 ◽  
Author(s):  
Krunal Gajera ◽  
Bruno Dal Lago ◽  
Luca Capacci ◽  
Fabio Biondini

Following the empirical observation of widespread collapses of cladding panel connections of precast industrial buildings under recent seismic events, new design solutions have been developed in the framework of the European project SAFECLADDING, including isostatic systems effectively decoupling the seismic response of frame structure and cladding panels. The present paper is aimed at evaluating the seismic response and vulnerability of precast frame structures employing pendulum, cantilever, and rocking cladding connection systems. Within the framework of the research project RINTC–Implicit seismic risk of code-conforming structures funded by the Italian Civil Protection Department within the ReLUIS program, the seismic performance of a typical precast industrial building has been assessed with a probabilistic approach based on the results of static and multi-stripe dynamic non-linear analyses. The seismic vulnerability assessment of each structural system has been carried out with reference to life safety and damage limit states considering three sites of increasing seismic hazard in Italy. The effect of distributed panel mass modeling vs. more common lumped mass modeling has been analyzed and critically commented based on the results of demand over capacity (D/C) ratios. Moreover, biaxial seismic D/C ratios have been evaluated for realistic strong hinge connections for cladding panels.


2021 ◽  
Author(s):  
Anthony Chun Yin Yuen ◽  
Timothy Bo Yuan Chen ◽  
Ao Li ◽  
Ivan Miguel De Cachinho Cordeiro ◽  
Luzhe Liu ◽  
...  

2021 ◽  
Vol 7 ◽  
Author(s):  
Blaž Zoubek ◽  
Anže Babič ◽  
Matjaž Dolšek ◽  
Matej Fischinger ◽  
Tatjana Isaković

Although in Europe, precast concrete buildings had been built for decades, their seismic response was poorly understood, which is reflected in ambiguous code requirements and conservative design approaches. Therefore, this structural system was the main focus of several European research projects in the past 2 decades. The University of Ljubljana was actively involved in these projects. The key results of the work performed at the University of Ljubljana are presented and discussed in this paper. The main contributions include: a) the development of a new capacity model of beam-column dowel connections, which are one of the critical parts of the RC precast structural system, b) new insight into the cyclic behaviour of fastening systems of concrete cladding panels, and new design procedures for the estimation of strength and displacement capacity of cladding fasteners, c) the development of a methodology for seismic fragility analysis of RC precast buildings, and the fragility curves of precast RC building classes, which can be used for the safety-calibration of the new design procedures of RC precast buildings, and d) the development of a relatively simple and economically attractive back-up (strengthening) system to prevent the falling of panels in case of a strong earthquake.


Sign in / Sign up

Export Citation Format

Share Document