power capture
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 30)

H-INDEX

18
(FIVE YEARS 4)

Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 376
Author(s):  
Biswaranjan Mohanty ◽  
Kim A. Stelson

Hydrostatic transmissions are commonly used in heavy-duty equipment for their design flexibility and superior power density. Compared to a conventional wind turbine transmission, a hydrostatic transmission (HST) is a lighter, more reliable, cheaper, continuously variable alternative for a wind turbine. In this paper, for the first time, a validated dynamical model and controlled experiment have been used to analyze the performance of a hydrostatic transmission with a fixed-displacement pump and a variable-displacement motor for community wind turbines. From the dynamics of the HST, a pressure control strategy is designed to maximize the power capture. A hardware-in-the-loop simulation is developed to experimentally validate the performance and efficiency of the HST drive train control in a 60 kW virtual wind turbine environment. The HST turbine is extensively evaluated under steady and time-varying wind on a state-of-the-art power regenerative hydrostatic dynamometer. The proposed controller tracks the optimal tip-speed ratio to maximize power capture.


2021 ◽  
Author(s):  
Daniel Escobar-Naranjo ◽  
Biswaranjan Mohanty ◽  
Kim A. Stelson

Abstract Adaptive control strategies are commonly used for systems that change over time, such as wind turbines. Extremum Seeking Control (ESC) is a model-free real-time adaptive control strategy commonly used in conventional gearbox wind turbines for Maximum Power Point Tracking (MPPT). ESC optimizes the rotor power by constantly tuning the torque control gain (k) when operating below rated power. The same concept can be applied for hydrostatic wind turbines. This paper studies the use of ESC for a 60-kW hydrostatic wind turbine. First, a systematic approach to establish the ideal ESC is shown. Second, a comparison of the power capture performance of ESC versus the conventional torque control law (the kω2 law) is shown. The simulations include a timesharing power capture coefficient (Cp) to clearly show the advantages of using ESC. Studies under steady and realistic wind conditions show the main advantages of using ESC for a hydrostatic wind turbine.


2021 ◽  
Vol 237 ◽  
pp. 109338
Author(s):  
Nianfan Zhang ◽  
Xiantao Zhang ◽  
Longfei Xiao ◽  
Handi Wei ◽  
Weixing Chen

2021 ◽  
Author(s):  
Emmanouil M. Nanos ◽  
Carlo L. Bottasso ◽  
Dimitris I. Manolas ◽  
Vasilis A. Riziotis

Abstract. This paper presents a feasibility analysis of vertical wake steering for floating turbines by differential ballast control. This new concept is based on the idea of pitching the floater with respect to the water surface, thereby achieving a desired tilt of the turbine rotor disk. The pitch attitude is controlled by moving water ballast among the columns of the floater. This study considers the application of differential ballast control to a conceptual 10 MW wind turbine installed on two platforms, differing in size, weight and geometry. The analysis considers: a) the aerodynamic effects caused by rotor tilt on the power capture of the wake-steering turbine and at various downstream distances in its wake; b) the effects of tilting on fatigue and ultimate loads, limitedly to one of the two turbine-platform layouts; and c) for both configurations, the necessary amount of water movement, the time to achieve a desired attitude and the associated energy expenditure. Results indicate that – in accordance with previous research – steering the wake towards the sea surface leads to larger power gains than steering it towards the sky. Limitedly to the structural analysis conducted on one of the turbine-platform configurations, it appears that these gains can be obtained with only minor effects on loads, assuming a cautious application of vertical steering only in benign ambient conditions. Additionally, it is found that rotor tilt can be achieved in the order of minutes for the lighter of the two configurations, with reasonable water ballast movements. Although the analysis is preliminary and limited to the specific cases considered here, results seem to suggest that the concept is not unrealistic, and should be further investigated as a possible means to achieve variable tilt control for vertical wake steering in floating turbines.


2021 ◽  
Author(s):  
Cole Burge ◽  
Nathan Tom ◽  
Krish Thiagarajan ◽  
Jacob Davis ◽  
Nhu Nguyen

Abstract This paper analyzes the power capture potential, structural loadings, and costs associated with an oscillating surge wave energy converter (OSWEC) operating on a raised foundation. The raised OSWEC offers opportunities for reduced installation costs, improved energy production, and greater flexibility of deployment when compared with fixed-bottom models. In this investigation, we simulated several different foundation geometries using WEC-Sim to estimate power capture and structural loads. In an effort to maximize power capture, several cases in which flat plates of varying size were attached to the top of the foundation, under and parallel with the OSWEC, were also simulated. These plates were found to enhance power capture by preventing the wave-induced pressure from passing underneath the OSWEC, diverting this pressure toward the OSWEC instead. The OSWEC was simulated in the six Wave Energy Prize sea states, which were chosen as a representative sample of U.S. deployment sites. A first-order estimate of structural costs was calculated using the Wave Energy Prize ACE metric, with the foundation comprised predominantly of steel-reinforced concrete and the OSWEC comprised of A36 steel. Influence of foundation geometry on power capture, structural loadings, and ACE are topics of particular interest. This work has been inspired by advances in large-scale additive manufacturing techniques that have the potential to dramatically reduce the cost of subsea foundations. These advancements may enable cost-effective WEC systems to be deployed on raised foundations.


Sign in / Sign up

Export Citation Format

Share Document