indica hybrid rice
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 12)

H-INDEX

11
(FIVE YEARS 1)

2022 ◽  
Vol 79 (4) ◽  
Author(s):  
ZhiYuan Huang ◽  
QiMing Lv ◽  
Md. Amir Hossain ◽  
ZhaoHui Wu ◽  
FangJun Tan ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jinfeng Peng ◽  
Yuehua Feng ◽  
Xiaoke Wang ◽  
Jie Li ◽  
Guiling Xu ◽  
...  

AbstractA field experiment employing the rice cultivars Qyou6 and Yixiangyou2115 as materials and different nitrogen application rates was conducted in Huangping County, Guizhou Province in 2019 to determine the effects of nitrogen application rate on photosynthetic pigments, leaf fluorescence characteristics, yield, and their interrelations in indica hybrid rice. The results showed that photosynthetic pigment contents generally increased with increasing nitrogen application rate. As the nitrogen rate increased, the maximal quantum yield of PSII (Fv/Fm), actual quantum yield of PSII (ΦPSII), and relative electron transfer rate at PSII (ETR) first decreased and then increased at the booting stage; Fv/Fm and ΦPSII decreased while ETR first increased and then decreased at the heading stage; nevertheless, Fv/Fm and ΦPSII first decreased and then increased but ETR was just the opposite at the maturity stage. Non-photochemical quenching coefficient (qN) and quantum yield of regulatory energy dissipation at PSII (Y(NPQ)) first increased and then decreased whereas quantum yield of non-regulatory energy dissipation at PSII (Y(NO)) first decreased and then increased at the booting, heading, and maturity stages with increasing nitrogen application rate. Photochemical quenching coefficient (qP) showed an increasing trend as the nitrogen rate increased in the range of 150–300 kg/ha at the heading and maturity stages. Photosynthetic pigments, leaf fluorescence characteristics, and yield and its components were significantly correlated. First, chlorophylls a and b were significantly negatively correlated with Fv/Fm while significantly positively correlated with qP at the heading stage. Secondly, Carotenoids were significantly positively correlated with the effective panicle number (EPN) at the booting stage while significantly negatively correlated with the spikelets per panicle (SPP) at the heading stage. Chlorophyll a and carotenoids were significantly positively correlated with EPN but significantly negatively correlated with spikelet filling (SF) at the maturity stage. In addition, qP was significantly negatively correlated with EPN at the booting stage. At the heading stage, Fv/Fm and Y(NO) were significantly negatively correlated with EPN and SPP, respectively, and Fv/Fm and ΦPSII were significantly positively related to SF. Moreover, qP was extremely significantly positively related to EPN whereas Fv/Fm was extremely significantly negatively correlated with grain yield at the maturity stage. Appropriate nitrogen application rates can enhance photosynthetic pigment contents, improve the photochemical efficiency and proportion of the open part of the reaction center of PSII, and promote the quantum efficiency and self-protection ability of PSII, thereby increasing photosynthetic efficiency and yield. Under the conditions adopted in this experiment, a parabolic relationship was observed between the nitrogen application rate and grain yield. The regression analysis results showed that the best nitrogen application rate of indica hybrid rice is 168.16 kg ha−1 and the highest yield is 11,804.87 kg ha−1.


Author(s):  
Xiaolong Zhong ◽  
Hafiz Athar Hussain ◽  
Bingbing Zhao ◽  
Manyu Huang ◽  
Saddam Hussain ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Yan Peng ◽  
Bigang Mao ◽  
Changquan Zhang ◽  
Ye Shao ◽  
Tianhao Wu ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 26
Author(s):  
Tao Sun ◽  
Xin Yang ◽  
Sheng Tang ◽  
Kefeng Han ◽  
Ping He ◽  
...  

Nutrient requirements for single-season rice using the quantitative evaluation of the fertility of tropical soils (QUEFTS) model in China have been estimated in a previous study, which involved all the rice varieties; however, it is unclear whether a similar result can be obtained for different rice varieties. In this study, data were collected from field experiments conducted from 2016 to 2019 in Zhejiang Province, China. The dataset was separated into two parts: japonica/indica hybrid rice and japonica rice. To produce 1000 kg of grain, 13.5 kg N, 3.6 kg P, and 20.4 kg K were required in the above-ground plant dry matter for japonica/indica hybrid rice, and the corresponding internal efficiencies (IEs) were 74.0 kg grain per kg N, 279.1 kg grain per kg P, and 49.1 kg grain per kg K. For japonica rice, 17.6 kg N, 4.1 kg P, and 23.0 kg K were required to produce 1000 kg of grain, and the corresponding IEs were 56.8 kg grain per kg N, 244.6 kg grain per kg P, and 43.5 kg grain per kg K. Field validation experiments indicated that the QUEFTS model could be used to estimate nutrient uptake of different rice varieties. We suggest that variety should be taken into consideration when estimating nutrient uptake for rice using the QUEFTS model, which would improve this model.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1876
Author(s):  
Xiaolong Zhong ◽  
Bingbing Zhao ◽  
Manyu Huang ◽  
Hafiz Athar Hussain ◽  
Saddam Hussain ◽  
...  

Analysis of growth and yield characteristics of rice with different yield levels is very important for the breeding of high-yield rice cultivators. To investigate the yield components’ variation, morphological characteristics of the panicles, leaves, and stems of rice varieties under different yield levels, a two-year field experiment was conducted in Chongqing China. The 20 mid-season Indica hybrid rice varieties were classified into three groups based on yield, comprising high-yield group (HG), mid-yield group (MG), and low-yield group (LG). The main reason for the superior yield of HG is that the varieties of this group had a significantly higher number of effective panicles per unit area than the MG and LG. In plant type factors, the leaf type factors were the most important reason causing yield difference of HG, MG, and LG. The average leaf roll index, average leaf length to width ratio, average leaf base angle, average leaf droop angle, and average leaf pillow distance of the upper three leaves were significantly or significantly negatively correlated with the yield, while the average leaf width, average leaf area, and the average distance of leaf edge were significantly or significantly positively correlated with yield, and the leaf droop angle was the most important plant type factor affecting the yield. Based on these results, we further quantified the plant type factors of HG and constructed an ideal plant type model for high-yield hybrid mid-season rice. Theoretical and practical basis could be provided for breeding mid-season Indica hybrid rice with super-high yield in the future to ensure food security.


2020 ◽  
Vol 9 (3) ◽  
Author(s):  
ZhiYuan Huang ◽  
QiMing Lv ◽  
YeYun Xin ◽  
LongPing Yuan ◽  
XiQin Fu ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 171
Author(s):  
Tao Sun ◽  
Xin Yang ◽  
Xiaoli Tan ◽  
Kefeng Han ◽  
Sheng Tang ◽  
...  

Previous studies have revealed that the japonica/indica hybrid rice has a higher yield potential, biomass production, and nitrogen (N) accumulation than japonica rice in China, however, at a single N application rate. It remains unclear whether it also occurs at a higher or lower N application rate under the same field condition. To investigate the effects of nitrogen application rates on grain yield, N uptake, dry matter accumulation, and agronomic N use efficiency, field experiments were conducted in Jinhua City, Zhejiang Province during three consecutive growth seasons in 2016, 2017, and 2018. Two japonica/indica hybrid varieties (Yongyou 12 and Yongyou 538) and two japonica varieties (Xiushui 134 and Jia 58) were exposed to five N application rates (0, 150, 225, 300, and 375 kg ha−1). The results showed that grain yields of all the varieties increased with increasing nitrogen application rates, except for Jia 58 whose optimum nitrogen level was 225 kg ha−1, because no significant difference was observed between N225 and N300. Across the four rice varieties, N uptake increased significantly with increased N-fertilizer rates at all the growth stages (p < 0.05). Across the three planting years, the average grain yield of japonica/indica hybrid rice was higher than that of japonica rice by 75.6% at N0, 57.2% at N150, 41.1% at N225, 38.3% at N300, and 45.8% at N375. We also found that as compared with japonica rice, the japonica/indica hybrid rice had more grain yield, higher dry matter, and higher N uptake at all growth stages, regardless of the N application rate.


2020 ◽  
Vol 7 (4) ◽  
pp. 523
Author(s):  
Kai WANG ◽  
Qunfeng ZHOU ◽  
Tianze YAN ◽  
Shilong XU ◽  
Longyi ZHAO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document