notch receptor
Recently Published Documents


TOTAL DOCUMENTS

303
(FIVE YEARS 56)

H-INDEX

56
(FIVE YEARS 5)

2022 ◽  
Author(s):  
LaNisha L. Patterson ◽  
Thangam Sudha Velayutham ◽  
Caitlan D. Byerly ◽  
Duc Cuong Bui ◽  
Jignesh Patel ◽  
...  

Ehrlichia chaffeensis evades innate host defenses by reprogramming the mononuclear phagocyte through mechanisms that involve exploitation of multiple evolutionarily conserved cellular signaling pathways including Notch. This immune evasion strategy is directed in part by tandem repeat protein (TRP) effectors. Specifically, the TRP120 effector activates and regulates Notch signaling through interactions with the Notch receptor and the negative regulator, F-Box and WD repeat domain-containing 7 (FBW7). However, the specific molecular interactions and motifs required for E. chaffeensis TRP120-Notch receptor interaction and activation have not been defined. To investigate the molecular basis of TRP120 Notch activation, we compared TRP120 with endogenous canonical/non-canonical Notch ligands and identified a short region of sequence homology within the tandem repeat (TR) domain. TRP120 was predicted to share biological function with Notch ligands, and a function-associated sequence in the TR domain was identified. To investigate TRP120-Notch receptor interactions, colocalization between TRP120 and endogenous Notch-1 was observed. Moreover, direct interactions between full length TRP120, the TRP120 TR domain containing the putative Notch ligand sequence, and the Notch receptor LBR were demonstrated. To molecularly define the TRP120 Notch activation motif, peptide mapping was used to identify an 11-amino acid short linear motif (SLiM) located within the TRP120 TR that activated Notch signaling and downstream gene expression. Peptide mutants of the Notch SLiM or anti-Notch SLiM antibody reduced or eliminated Notch activation and NICD nuclear translocation. This investigation reveals a novel molecularly defined pathogen encoded Notch SLiM mimetic that activates Notch signaling consistent with endogenous ligands.


2022 ◽  
Author(s):  
fanglin zhang ◽  
Hongwei Ma ◽  
Yongheng Yang ◽  
Tiejian Nie ◽  
Rong Yan ◽  
...  

Abstract Hantaan virus (HTNV) is principally maintained and transmitted by rodents in nature, the infection of which is non-pathogenic in the field or laboratory mouse, but can cause hemorrhagic fever with renal syndrome (HFRS) in human beings, a severe systemic inflammatory disease with high mortality. It remains obscure how HTNV infection leads to disparate outcomes in distinct species. Here, we revealed a differential immune status in murine versus humans post HTNV infection, which was orchestrated by the macrophage reprogramming process and characterized by late-phase inactivation of NF-κB signaling. In HFRS patients, the immoderate and continuous activation of inflammatory monocyte/macrophage (M1) launched TNFα-centered cytokine storm and aggravated host immunopathologic injury, which can be life-threatening; however, in field or laboratory mice, the M1 activation and TNFα release were significantly suppressed at the late infection stage of HTNV, restricting excessive inflammation and blocking viral disease process, which also protected mice from secondary LPS challenge or polymicrobial sepsis. Mechanistically, we found that murine macrophage phenotype was dynamically manipulated by HTNV via the Notch-lncRNA-p65 axis. At the early stage of HTNV infection, the intracellular domain of Notch receptor (NICD) was activated by viral nucleocapsid (NP) stimulation and potentiated the NF-κB pathway by associating with and facilitating the interaction between IKKβ and p65. At the late stage, Notch signaling launched the expression of diverse murine-specific long non-coding RNAs (lncRNAs) and attenuated M1 polarization. Among them, lncRNA 30740.1 (termed as lnc-ip65, an inhibitor of p65) bound to p65 and hindered its phosphorylation, exerting negative feedback on the NF-κB pathway. Genetic ablation of lnc-ip65 shifted the balance of macrophage polarization from a pro-resolution to an inflammatory phenotype, leading to superabundant production of pro-inflammatory cytokines and increasing mice susceptibility to HTNV infection or bacterial sepsis. Collectively, our findings identify an immune braking function and mechanism for murine lncRNAs in inhibiting p65-mediated M1 activation, opening a novel therapeutic avenue of controlling the magnitude of immune responses for HFRS and other inflammatory diseases.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jin Xu ◽  
Weixue Xu ◽  
Xuan Yang ◽  
Zhen Liu ◽  
Yiya Zhao ◽  
...  

Abstract Background Pancreatic cancer (PCa) is a fatal malignancy with poor prognosis, high recurrence and mortality. Substantial reports have suggested long non-coding RNAs (lncRNAs) are implicated in development of numerous malignant tumors, and PCa is included. However, the correlation between novel lncRNA mir-99a-let-7c cluster host gene (MIR99AHG) and PCa remains elusive and needs to be deeply investigated. Methods In this study, we firstly used RT-qPCR to examine MIR99AHG expression. Functional assays were implemented for determination of the role of MIR99AHG in PCa cells. Mechanism experiments were designed and carried out for exploring the regulatory mechanism involving MIR99AHG. Results MIR99AHG was distinctly overexpressed in PCa cell lines. MIR99AHG deficiency abrogated PCa cell proliferation, migration and invasion. Moreover, MIR99AHG up-regulation was induced by transcription factor forkhead box A1 (FOXA1). Furthermore, MIR99AHG modulated notch receptor 2 (NOTCH2) expression and stimulated Notch signaling pathway through sequestering microRNA-3129-5p (miR-3129-5p) and recruiting ELAV like RNA binding protein 1 (ELAVL1). Conclusions Altogether, the exploration of FOXA1/MIR99AHG/miR-3129-5p/ELAVL1/NOTCH2 axis in the progression of PCa might provide a meaningful revelation for PCa diagnosis and treatment.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sandeep Gopal ◽  
Aqilah Amran ◽  
Andre Elton ◽  
Leelee Ng ◽  
Roger Pocock

AbstractCommunication between the soma and germline optimizes germ cell fate programs. Notch receptors are key determinants of germ cell fate but how somatic signals direct Notch-dependent germ cell behavior is undefined. Here we demonstrate that SDN-1 (syndecan-1), a somatic transmembrane proteoglycan, controls expression of the GLP-1 (germline proliferation-1) Notch receptor in the Caenorhabditis elegans germline. We find that SDN-1 control of a somatic TRP calcium channel governs calcium-dependent binding of an AP-2 transcription factor (APTF-2) to the glp-1 promoter. Hence, SDN-1 signaling promotes GLP-1 expression and mitotic germ cell fate. Together, these data reveal SDN-1 as a putative communication nexus between the germline and its somatic environment to control germ cell fate decisions.


Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1672
Author(s):  
Anja C. Nagel ◽  
Dominik Müller ◽  
Mirjam Zimmermann ◽  
Anette Preiss

The Notch signaling pathway is pivotal to cellular differentiation. Activation of this pathway involves proteolysis of the Notch receptor and the release of the biologically active Notch intracellular domain, acting as a transcriptional co-activator of Notch target genes. While the regulation of Notch signaling dynamics at the level of ligand–receptor interaction, endocytosis, and transcriptional regulation has been well studied, little is known about factors influencing Notch cleavage. We identified EP555 as a suppressor of the Notch antagonist Hairless (H). EP555 drives expression of CG32521 encoding membrane-bound proteins, which we accordingly rename membrane-bound Notch regulator (mnr). Within the signal-receiving cell, upregulation of Mnr stimulates Notch receptor activation, whereas a knockdown reduces it, without apparent influence on ligand–receptor interaction. We provide evidence that Mnr plays a role in γ-secretase-mediated intramembrane cleavage of the Notch receptor. As revealed by a fly-eye-based reporter system, γ-secretase activity is stimulated by the overexpression of Mnr, and is inhibited by its knockdown. We conclude that Mnr proteins support Notch signaling activity by fostering the cleavage of the Notch receptor. With Mnr, we identified a membrane-bound factor directly augmenting Notch intra-membrane processing, thereby acting as a positive regulator of Notch signaling activity.


Biology Open ◽  
2021 ◽  
Vol 10 (11) ◽  
Author(s):  
Lin Shi ◽  
Ruiyan Kong ◽  
Zhengran Li ◽  
Hang Zhao ◽  
Rui Ma ◽  
...  

ABSTRACT Adult stem cells are critical for the maintenance of tissue homeostasis. However, how the proliferation and differentiation of intestinal stem cells (ISCs) are regulated remains not fully understood. Here, we find a mutant, stum 9-3, affecting the proliferation and differentiation of Drosophila adult ISCs in a forward genetic screen for factors regulating the proliferation and differentiation ISCs. stum 9-3 acts through the conserved Notch signaling pathway, upstream of the S2 cleavage of the Notch receptor. Interestingly, the phenotype of stum 9-3 mutant is not caused by disruption of stumble (stum), where the p-element is inserted. Detailed mapping, rescue experiments and mutant characterization show that stum 9-3 is a new allele of O-fucosyltransferase 1 (O-fut1). Our results indicate that unexpected mutants with interesting phenotype could be recovered in forward genetic screens using known p-element insertion stocks.


2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Xiaqiong Mao ◽  
Tao Ji ◽  
Aiguo Liu ◽  
Yunqi Weng

AbstractLong non-coding RNAs (lncRNAs) play important regulatory roles in the initiation and progression of various cancers. However, the biological roles and the potential mechanisms of lncRNAs in gastric cancers remain unclear. Here, we report that the expression of lncRNA SNHG22 (small nucleolar RNA host gene 22) was significantly increased in GC (Gastric Cancer) tissues and cells, which confers poor prognosis of patients. Knockdown of SNHG22 inhibited the proliferation and invasion ability of GC cells. Moreover, we identified that the transcriptional factor, ELK4 (ETS transcription factor ELK4), could promote SNHG22 expression in GC cells. In addition, using RNA pull-down followed MS assay, we found that SNHG22 directly bound to EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit) to suppress the expression of tumor suppressor genes. At the same time, SNHG22 sponged miR-200c-3p to increase Notch1 (notch receptor 1) expression. Taken together, our findings demonstrated the role of SNHG22 on promoting proliferation and invasion of GC cells. And we revealed a new regulatory mechanism of SNHG22 in GC cells. SNHG22 is a promising lncRNA biomarker for diagnosis and prognosis and a potential target for GC treatment.


2021 ◽  
Author(s):  
Qinchao Zhou ◽  
Lei Lei ◽  
Hefei Zhang ◽  
Shih-Ching Chiu ◽  
Lu Gao ◽  
...  

Cardiac looping and trabeculation are key processes during cardiac chamber maturation. However, the underlying mechanisms remain incompletely understood. Here, we report the isolation, cloning, and characterization of the proprotein convertase furina from the cardiovascular mutant loft in zebrafish. loft is an ethylnitrosourea-induced mutant and has evident defects in the cardiac outflow tract, heart looping and trabeculation, the craniofacial region, and pharyngeal arch arteries. Positional cloning revealed that furina mRNA was barely detectable in loft mutants, and loft failed to complement the TALEN-induced furina mutant pku338, confirming that furina is responsible for the loft mutant phenotypes. Mechanistic studies demonstrated that Notch reporter Tg(tp1:mCherry) signals were largely eliminated in mutant hearts, while over-expression of NICD partially rescued the mutant phenotypes, probably due to the lack of Furina-mediated cleavage processing of Notch1b proteins, the only Notch receptor expressed in the heart. Together, our data suggest a potential post-translational modification of Notch1b proteins via the proprotein convertase Furina in the heart and unveil the function of the Furina-Notch1b axis in cardiac looping and trabeculation in zebrafish and possibly in other organisms.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (9) ◽  
pp. e1009687
Author(s):  
Ramya Singh ◽  
Ryan B. Smit ◽  
Xin Wang ◽  
Chris Wang ◽  
Hilary Racher ◽  
...  

Regulating the balance between self-renewal (proliferation) and differentiation is key to the long-term functioning of all stem cell pools. In the Caenorhabditis elegans germline, the primary signal controlling this balance is the conserved Notch signaling pathway. Gain-of-function mutations in the GLP-1/Notch receptor cause increased stem cell self-renewal, resulting in a tumour of proliferating germline stem cells. Notch gain-of-function mutations activate the receptor, even in the presence of little or no ligand, and have been associated with many human diseases, including cancers. We demonstrate that reduction in CUP-2 and DER-2 function, which are Derlin family proteins that function in endoplasmic reticulum-associated degradation (ERAD), suppresses the C. elegans germline over-proliferation phenotype associated with glp-1(gain-of-function) mutations. We further demonstrate that their reduction does not suppress other mutations that cause over-proliferation, suggesting that over-proliferation suppression due to loss of Derlin activity is specific to glp-1/Notch (gain-of-function) mutations. Reduction of CUP-2 Derlin activity reduces the expression of a read-out of GLP-1/Notch signaling, suggesting that the suppression of over-proliferation in Derlin loss-of-function mutants is due to a reduction in the activity of the mutated GLP-1/Notch(GF) receptor. Over-proliferation suppression in cup-2 mutants is only seen when the Unfolded Protein Response (UPR) is functioning properly, suggesting that the suppression, and reduction in GLP-1/Notch signaling levels, observed in Derlin mutants may be the result of activation of the UPR. Chemically inducing ER stress also suppress glp-1(gf) over-proliferation but not other mutations that cause over-proliferation. Therefore, ER stress and activation of the UPR may help correct for increased GLP-1/Notch signaling levels, and associated over-proliferation, in the C. elegans germline.


Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1369 ◽  
Author(s):  
Judith Hounjet ◽  
Marc Vooijs

Aberrant Notch signaling has been found in a broad range of human malignancies. Consequently, small molecule inhibitors and antibodies targeting Notch signaling in human cancers have been developed and tested; however, these have failed due to limited anti-tumor efficacy because of dose-limiting toxicities in normal tissues. Therefore, there is an unmet need to discover novel regulators of malignant Notch signaling, which do not affect Notch signaling in healthy tissues. This review provides a comprehensive overview of the current knowledge on the role of intracellular trafficking in ligand-independent Notch receptor activation, the possible mechanisms involved, and possible therapeutic opportunities for inhibitors of intracellular trafficking in Notch targeting.


Sign in / Sign up

Export Citation Format

Share Document