damage effect
Recently Published Documents


TOTAL DOCUMENTS

415
(FIVE YEARS 112)

H-INDEX

22
(FIVE YEARS 4)

2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Yongfeng Lu ◽  
Kepeng Hou ◽  
Huafen Sun ◽  
Wei Sun ◽  
Shengyou Zhang ◽  
...  

In order to study the influence of elevation on the slake durability index of the quartz mica schist, the quartz mica schist with different elevations on the east slope of the Manjiazhai open-pit mine is taken as the research object, and based on laboratory tests and statistical analysis, the variation of negative correlation between the slake durability index and elevation is obtained. The disintegration mechanism of quartz mica schist at different elevations is also discussed. The test results show that the disintegration characteristics of quartz mica schist at different elevations are related to its mineral composition, fissure channel size, and rock damage effect. As the slope height increases, the ratio of mica to quartz in the rock increases, and the greater the porosity of the rock, the more fissures in the rock, the greater the permeability coefficient, and the more obvious the change of effective stress of rock under osmotic pressure. At the same time, the higher the slope elevation of open-pit mine, the longer the weathering time of rock, the higher the cumulative damage of rock, and the lower the rock slake durability index. This study provides a new idea for guiding the research on the disintegration characteristics of similar soft rock slopes in the elevation direction.


2022 ◽  
Author(s):  
Xuming Zhang ◽  
Ya-ling Liu ◽  
Ying Cai ◽  
Ying Hao ◽  
Sheng Kang

Abstract Background Ventricular tachycardia (VT) and ventricular fibrillation are the most causes of early death in patients with myocardial infarction (MI). This study was aimed to explore whether LRP6 and its upstream genes circRNA1615 and miR-152-3p modulated the phosphorylation of Connexin-43 (Cx43) via Gαs in ventricular tachycardia of MI. Method we constructed the hypoxia cardiomyocyte model and AMI mice, and explored the modulation relationship of LRP6 and its upstream genes circRNA1615 and miR-152-3p. In addition, the immunoblot analysis with monoclonal and polyclonal antibodies were used to detect whether LRP6 and Cx43 were phosphorylated, further investigated that the LRP6 regulated the phosphorylation of its downstream target Cx43 via G-protein alpha subunit Gαs by using cell transfection, FISH assay, HE staining, RT-qPCR, and Western blot techniques. Result LRP6 mRNA expression was significantly reduced in AMI group compared with the control group. Hypoxia could inhibit the protein and phosphorylation levels of LRP6 and Cx43. The expression of circRNA1615 in AMI mice was significantly decreased, but overexpression of circRNA1615 significantly reversed it. Also overexpression of circRNA1615 could weaken the effect of miR-152-3p mimic, and the miR-152-3p mimic increased the hypoxia injury of LRP6 and Cx43, further LRP6 interference fragments could aggravate hypoxia injury of Cx43. The overexpression of LRP6 could significantly increase the protein level and phosphorylation level of Cx43, but the interference with LRP6 showed the opposite trend. Noticeably, the interference with Gαs weakened the protein and phosphorylation levels of Cx43, however, the interference with LRP6 further inhibited the protein and phosphorylation levels of Cx43. Finally, the transcriptions of circRNA1615 and LRP6 were inhibited in AMI, but the transcription of miR-152-3p was promoted, and the overexpression of circRNA1615 could weaken the damage effect and VT of AMI. Conclusion LRP6 and its upstream genes circRNA1615 and miR-152-3p modulated the phosphorylation of Cx43 via Gαs in ventricular tachycardia of myocardial infarction.


2022 ◽  
Vol 2148 (1) ◽  
pp. 012018
Author(s):  
Hong Tang ◽  
Hongbo Zhai ◽  
Jianjun Su ◽  
Teng Fu

Abstract Aiming at the damage effect of reinforced concrete beams subjected to close-in explosion, numerical simulation and dimensional analysis are carried out to study the damage of beams under close-in explosion with spherical charge. The damage characteristics of beams were obtained by the methods of AUTODYN and DYNA. Using dimensional analysis, the relationship between the damage characteristics of reinforced concrete beams and the stand-off distance is deduced. The empirical equation of the beam punching shear failure characteristics is fitted on the basis of numerical simulation. The results show that the simulation method is more efficient than the fluid-solid coupling calculation; the proposed empirical equation is in good agreement with the experimental results. The relationship between failure width and the stand-off distance obtained by the fitting and the modelling method have reference value for the research on the damage effect of reinforced concrete beams.


Author(s):  
Shuanzhu Tian ◽  
Xiuli Du ◽  
Qiushi Yan ◽  
Jun Wu ◽  
Tieshuan Zhuang

2021 ◽  
Author(s):  
Yi Luo ◽  
Hangli Gong ◽  
Dengxing Qu ◽  
Xinping Li ◽  
Shaohua Hu ◽  
...  

Abstract The escape of toxic and harmful gases is a common disaster effect in tunnel engineering. Frequent drilling and blasting excavation disturbances under high in-situ stress environment will inevitably lead to cumulative damage effect on surrounding rock, which will increase the permeability coefficient of surrounding rock, increase the risk of toxic and harmful gas escape, and seriously endanger construction safety. In this paper, based on real-time monitoring data of harmful gases during blasting and excavation of Yuelongmen Tunnel on Chengdu-Lanzhou Railway, this study summarized laws and distribution characteristics of harmful gas escape intensified by the blasting excavation, and the effectiveness of shotcreting and grouting for water blocking to inhibit gas escape is verified. Then, taking water-containing and gas-containing voids as carriers, considering the influence of different in-situ stress, explosion load and void parameters (including void pressure, void diameter and distance between void and tunnel), to carry out research on the escape mechanism of water-soluble (H 2 S) and insoluble (CH 4 ) toxic and harmful gases under the coupling effect of stress-seepage-damage. The relationship between the amount of harmful gas escaped and the damage degree of the surrounding rock of the tunnel is analyzed, and the functional relationship between it and the in-situ stress, explosion load and cave parameters is established. The results further demonstrate that the amount of escaped harmful gases, such as methane and H 2 S is closely related to lithology of surrounding rock, occurrence conditions of the deep rock mass, development degree of structural fractures and void parameters. The damage of surrounding rock caused by dynamic disturbance during blasting excavation is the main reason of aggravating harmful gas escape. The research results can provide a theoretical reference for preventing harmful gas from escaping in the similar engineering construction.


2021 ◽  
Vol 2101 (1) ◽  
pp. 012067
Author(s):  
J J Tang ◽  
Z F Liang ◽  
X Y Hu

Abstract The excellent material properties of tungsten heavy alloy (WHA) make it widely used in the military field. When used as killing elements of weapons, its dynamic mechanical properties under detonation loading directly determine the damage effect of weapons, which makes the research on its mechanical behaviors under high pressure and high strain rate loads such as detonation loading of great significance. In this paper, several WHAs with different compositions and processes are selected, and the mechanical properties and deformation and damage behavior under static explosion test are analyzed by combining macro and micro study, so as to provide guidance for the subsequent optimization of the performance design of WHA.


2021 ◽  
Vol 240 ◽  
pp. 109985
Author(s):  
Shangjian Lin ◽  
Jinxiang Wang ◽  
Liangtao Liu ◽  
Heng Li ◽  
Teng Ma ◽  
...  

Life Sciences ◽  
2021 ◽  
pp. 120053
Author(s):  
Jie Han ◽  
Danfeng Yang ◽  
Ziyi Liu ◽  
Lei Tian ◽  
Jun Yan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document