Mining science and technology
Latest Publications


TOTAL DOCUMENTS

170
(FIVE YEARS 88)

H-INDEX

3
(FIVE YEARS 2)

Published By National University Of Science And Technology Misis

2500-0632

2021 ◽  
Vol 6 (4) ◽  
pp. 252-258
Author(s):  
Sh. I. Khakimov ◽  
Sh. R. Urinov

In the process of underground mining of deep levels rock pressure can appear in any form, creating a serious threat to the lives of miners, disrupting the normal course of mining works and reducing the efficiency of mining production. The solution of the problem of rock pressure control becomes very urgent for underground mines developing vein deposits at a depth of more than 250 m. The aim of the study is the development and justification of mining methods to provide safe and efficient mining of deposits in complicated mining and mechanical conditions. In this paper, the factors of redistribution and dangerous concentration of stresses in the mined ore mass were identified, the methods of rock mass management in complicated geotechnical conditions were studied, and their advantages and disadvantages were revealed. It was determined that the sublevel stoping with the combined use of existing methods of rock pressure control and applying selfpropelled mining machinery is currently one of the most promising method finding widening application scope. In the context of Zarmitan gold ore zone the options of technological schemes of the sublevel stoping method were considered, providing for a combination of different methods of rock pressure control, allowing to minimize the disadvantages of one method through using the advantages of other ones. We proposed sublevel stoping options with artificial polygonal pillars and with artificial columnar pillars, which allowed to reduce ore losses in inter-stope pillars, arch pillars, and secondary dilution. In addition, artificial pillars, taking compressive/tensile stresses, prevent their concentration and create safe conditions for extraction at adjacent and underlying levels.


2021 ◽  
Vol 6 (4) ◽  
pp. 267-276
Author(s):  
A. A. Khoreshok ◽  
A. V. Kudrevatykh ◽  
A. S. Ashcheulov ◽  
A. V. Vinidiktov ◽  
L. I. Kantovich

At present, Kuzbass coal strip mines pay great attention to improving quality performance of mining equipment operation, including reliability and durability of components and units. One of the ways of the performance improvement is decreasing number of unforeseen failures. To achieve this purpose a mine dump truck part diagnostics should be introduced into a maintenance service procedure. At the same time the process of diagnostics should not increase the machinery downtime, but effectively reveal a condition of motor-wheel gearboxes in the course of dump truck operation. The aim of the research is to increase the reliability and service life of motor-wheel gearboxes of large BelAZ dump trucks. Failure of a motor-wheel gearbox is a rare phenomenon, but the cost of a new gearbox can vary from 3.5 to 10 million rubles. That is why it is important to implement such methods of diagnostics, which allow revealing the condition of gearboxes in the shortest possible time and without disassembling corresponding units. Determination of the actual technical condition of motor-wheel gearboxes is possible by different methods: vibroacoustic; acoustic; thermal; physical and chemical analysis of spent operating materials. The studies showed that none of these methods can be used as a universal one. When justifying and selecting the most suitable method, different factors should be considered, including technological, or a combination of methods should be applied, which will reduce risks, but at the same time increase costs. It is necessary to develop a better diagnostic method based on the use of several methods simultaneously.


2021 ◽  
Vol 6 (4) ◽  
pp. 233-240
Author(s):  
L. H. Trinh ◽  
V. N. Nguyen

Khanh Hoa coal mine (Thai Nguyen province) is one of the largest coal mines in the north of Vietnam. For many years, this area suffered from underground fires at coal mine waste dumps, seriously affecting production activities and the environment. This paper presents the results of classification of underground fire areas at Khanh Hoa coal mine using Normalized Diference Coal Fire Index (NDCFI). 03 Landsat 8 OLI_TIRS images taken on December 2, 2013, December 10, 2016, and December 3, 2019 were used to calculate NDCFI index, and then classify the underground fire areas by thresholding method. In the study, the land surface temperature was also calculated from Landsat 8 thermal infrared bands data, and then compared with the results of underground coal fire classification at Khanh Hoa coal mine. The obtained results showed that the NDCFI index can be used effectively in detecting and monitoring underground fire areas at coal mines. The use of the NDCFI index also has many advantages due to its calculation simplicity and rapidness compared to other methods for classifying underground coal fire areas.


2021 ◽  
Vol 6 (4) ◽  
pp. 241-251
Author(s):  
Q. L. Nguyen ◽  
Q. M. Nguyen ◽  
D. T. Tran ◽  
X. N. Bui

The paper is devoted to studying the possibility of using artificial neural networks (ANN) to estimate ground subsidence caused by underground mining. The experiments showed that the most suitable network structure is a network with three layers of perceptrons and four neurons in the hidden layer with the back propagation algorithm (BP) as a training algorithm. The subsidence observation data in the Mong Duong underground coal mine and other parameters, including: (1) the distance from the centre of the stope to the ground monitoring points; (2) the volume of mined-out space; (3) the positions of the ground points in the direction of the main cross-section of the trough; and (4) the time (presented by cycle number), were used as the input data for the ANN. The findings showed that the selected model was suitable for predicting subsidence along the main profile within the subsidence trough. The prediction accuracy depended on the number of cycles used for the network training as well as the time interval between the predicted cycle and the last cycle in the training dataset. When the number of monitoring cycles used for the network training was greater than eight, the largest values of RMS and MAE were less than 10 % compared to the actual maximum subsidence value for each cycle. If the network training was less than eight cycles, the results of prediction did not meet the accuracy requirements.


2021 ◽  
Vol 6 (4) ◽  
pp. 259-266
Author(s):  
S. O. Markov ◽  
E. V. Murko ◽  
F. S. Nepsha

Grain size distribution as a structural characteristic of waste rock and bulk masses in the course of mining and construction works acquires quantitative values in the process of rock blasting and hauling of rock mass. Such physical-mechanical and structural-textural parameters of a rock mass, as the ultimate strength of rocks and rock mass, fracturing, diameter of the natural rock jointing, have a significant impact on the blasted rock mass grain size distribution. On the other hand, such characteristics as stability, permeability of waste rock masses largely depend on the lithology and grain size distribution of the loosened rocks composing waste rock dumps and their height distribution within a dump. The paper describes the findings of the study of the grain size distribution of waste rock masses of Kuzbass coal strip mines and the features of its spatial variations within the masses. The textures of the bulk masses and physical and technical properties of the stacked rocks were studied both at the Kuzbass waste rock sites and in laboratory conditions. The grain size distribution of the fine lump part of the dumps with the lump size up to 50 mm was investigated by sieve method according to GOST 12536–2014, and the medium and large lump part was studied using oblique photoplanimetry. The field observations showed that the bottom part of the rock dumps, dumped by peripheral bulldozer or excavator methods was composed of coarse fraction with average lump size of: d<sub>cr</sub> = 0.8–1 m, while the middle part, of rock lumps of d<sub>cr</sub> = 0.4–0.6 m, and the upper part, mainly of fine fraction with lump size of less than 0.1 m. The ratio of length, width, and thickness of the blasted rock lumps was 1:0.85:0.8, which corresponds to elongated-flattened shape of the lumps. This requires significant number of coordinates for describing the lump positions in the rock mass, as well as taking into account the moments of inertia when modeling the motion of such lumps until they reach a stable position. Up-to-date non-commercial or commercial software and corresponding hardware can be used to take into account non-isometric shape of the lumps when modeling their motion.


2021 ◽  
Vol 6 (3) ◽  
pp. 203-210
Author(s):  
M. L. Kim ◽  
L. D. Pevzner ◽  
I. O. Temkin

Underground mining operations are connected with significant risks of technogenic accidents, which can be catastrophic. Mitigating the consequences of such phenomena directly depends on the reliability and efficiency of information about the state of parameters of many technological processes, mine workings and facilities located in them. At failure of standard systems of industrial telemetry in conditions of underground mining the creation of new information channels and places of information measurementbecomes practically impossible in case of emergency situation development. This predetermines necessity of use of essentially new systems of gathering and transfer of the information, based on robotized autonomous complexes. The task of acquiring reliable information about the situation in an emergency mine working with the help of drones (unmanned aerial vehicles or UAV) in order to make rational decisions in the course of the rescue operation is quite relevant. The aim of the paper was to develop a system of automatic control of an unmanned aerial vehicle (UAV) movement in confined space of a mine working, with significant perturbations of the mine air flow. The mathematical model of UAV movement in mine conditions, based on Euler angles or quaternions, was substantiated. The method of positioning through triangulation with the use of radio beacons was accepted as the basic method that allowed to determine the current position of an UAV. It was proposed to solve the problem of creation of the automatic system for an unmanned aerial vehicle movement control with the use of a hierarchical multiloop control system. The route planning algorithm was formed on the basis of the Dijkstra algorithm. For this purpose, discretization of the future motion space was performed, a labeled connected graph was constructed, on which the arc weights were the distances between the route points. A simulation experiment was implemented. The average deviation from the planned trajectory when flying at a speed of 10 m/s with payload mass up to 0.6 kg did not exceed 1 m, and the maximum deviation was unacceptably large. When flying at 6 m/s with payload mass up to 0.6 kg the average deviation did not exceed 0.3 m, and the maximum deviation, 1.2 m. The results of simulation of movement along the route towards the disturbing mine airflow showed that the control system allowed the UAV with payload of 0.6 kg to withstand the oncoming flow up to 8 m/s. It was obtained that with payload mass of 0.6 kg, the braking distance does not exceed 6 m if the UAV had a speed of 6 m/s, and the braking distance does not exceed 12 m at the speed of 10 m/s. The performed simulation studies confirmed the operating capability of the developed system for automatic motion control.


2021 ◽  
Vol 6 (3) ◽  
pp. 221-228
Author(s):  
D. P. Tibilov ◽  
Y. A. Domakhina ◽  
N. A. Lipnitsky

Today, in the times of economic uncertainty and unpredictability, it is important to respond to new challenges in a timely manner, using relevant tools to make effective management decisions. In the world practice, one of such tools for effective management of an industrial enterprise project is PEST-analysis, the functionality of which is considered in this paper. The study purpose is to conduct PEST-analysis, review and analyze the factors affecting the development of the Nivensky GOK (Mining and Concentration Complex), located in the Kaliningrad region – an export-oriented investment project to build a new industrial enterprise with core production of a premium mineral fertilizer, potassium sulfate. Based on the analysis, the paper proposes a number of feasible preventive measures for mitigating effects of negative factors, as well as for the development of strengths of the Nivensky GOK’s company-operator, “K-Potash Service” LLC. Thus, PEST-analysis of key micro- and macroeconomic factors allowed to comprehensively assess the position of Nivensky GOK in the emerging mining-and-chemical industry of Kaliningrad region. The study established the degree of influence of other internal and external factors on the company as well, including the possibilities of introducing new innovative techniques in the industrial enterprise operation, trends in the development of the mineral fertilizer market, taking into account the geopolitical context. Conclusions, recommendations and proposals allow evaluating the company and the possibilities of its development for making strategic and long-term decisions on the project development. The main results of the study can be used as effective tools for optimizing development of the new industrial enterprise project, Nivensky GOK.


2021 ◽  
Vol 6 (3) ◽  
pp. 181-191
Author(s):  
V. P. Zvereva ◽  
K. R. Frolov ◽  
A. I. Lysenko

Cassiterite-sulfide and polymetallic deposits of the Far Eastern Region (FER) were mined by both openpit and underground methods. This resulted in the emerging numerous mine workings and tailings storage facilities (TSFs) (abandoned without reclamation in latest decades) and the formation of mining technogenic mineralogical systems. Sulfide component of minerals in the mining technogenic system is subjected to hypergenic and technogenic processes (oxidation and hydrolysis reactions). As a result, highly concentrated technogenic solutions are formed, from which minerals of various classes precipitate. In this connection the purpose of this study was formulated as follows: to show the possibility of crystallization of technogenic minerals from micropore technogenic solutions. In achieving this goal the following tasks were solved: to demonstrate the possible reactions of oxidation and hydrolysis of technogenic minerals at the tailings storage facilities; to identify Eh-pH parameters of their precipitation from highly concentrated solutions; to determine their possible associations. The studies involved field observations and computations with the use of “Selector” software package. The study findings allow demonstrating possible chemical reactions and physico-chemical conditions of mineral formation for the following elements: Fe, Cu, Pb, Zn, Sb, Mg, Al, and Ca, including the following classes of minerals: oxides and hydroxides, sulfates, carbonates, arsenates and silicates. The paper presented for the first time the crystallization reactions of secondary minerals (37 ones) and their physico-chemical conditions. It was found that secondary minerals: jarosite, pitticite, siderite, tenorite, poznyakite, antlerite and ktenasite crystallize in the interval of positive temperatures, while scorodite, chalcantite, broshantite, cerussite, starkeyite, epsomite and rostite originate in cryogenic conditions (below 0 oC). All other minerals, the possibility of precipitation of which was shown in the paper, crystallized in the whole considered temperature interval, from −25 oС to +45 oС. Field studies and modeling data on formation of technogenic waters (solutions) and crystallization of secondary minerals on the surface of and inside tailings at the tailings storage facilities of the Far East showed high intensity of technogenic processes. Since the tailings storage facilities were not reclaimed, the process of environmental pollution, including the hydrosphere, would last for many decades.


2021 ◽  
Vol 6 (3) ◽  
pp. 158-169
Author(s):  
A. A. Rudenko ◽  
I. D. Troshkina ◽  
V. V. Danileyko ◽  
O. S. Barabanov ◽  
F. Ya. Vatsura

Analysis of exploration materials and market conditions showed that by-product recovery of rhenium, one of the rarest strategic elements of the periodic system, was not always effective in processing the whole volume of pregnant uranium-bearing solutions. The main goal of the research was to develop an effective method for recovery rhenium from pregnant solutions in in-situ uranium leaching. The objectives of the research were as follows: evaluation of the possibility of selective-and-advanced recovery of rhenium from ores by in-situ leaching method and comparison of the technological advantages of the new proposed method with the known ones. The study involved the analysis of historical geological, mineralogical and geochemical information on the Dobrovolnoye deposit and analysis of technological aspects of by-product recovery of rhenium in the world practice. A selective-and-advanced scheme of rhenium recovery from pregnant uranium-bearing sulfate (sulfuric acid) solutions of the Dobrovolnoye deposit ISL (Russia) using mobile installations was proposed. The process has the following features: zoning of production blocks when constructing injection and extraction (pumping) wells; piping of selective extraction wells into a separate collecting pipe; implementation of advanced rhenium sorption. The process implementation makes it possible to obtain rhenium from economically viable areas of the uranium deposit. The mobile installation includes the following main units: a filter for purification (aftertreatment) to remove suspension, a chain of sorption apparatuses (sorption filters or columns), connecting fittings, control and measuring instruments. The sorption apparatuses are filled with rhenium-selective ionite (ion exchanger). As a selective sorbent for the primary concentration of rhenium from sulfate solutions (pH 2), weakly basic nitrogen-bearing ionites containing amine functional groups of various types can be used. If further concentration of rhenium is required, in order to unify the equipment used, materials with a mobile extractant phase (so-called TVEXs (solid extractants or Levextrel resins in English literature) and so-called “impregnated” or “impregnates”), such as TVEX-DIDA containing diisododecyl amine, or TAA-impregnate containing trialkylamine, can be used. Rhenium desorption from these materials is carried out by an ammonia solution, which allows producing rough ammonium perrhenate from the eluate. Economic aspects of the rhenium selective-andadvanced technology were evaluated. Implementation of the recovery selective-and-advanced technology allows obtaining rhenium from economically-viable areas of the uranium deposit.


2021 ◽  
Vol 6 (3) ◽  
pp. 192-202
Author(s):  
M. A. Semin ◽  
A. V. Bogomyagkov ◽  
L. Y. Levin

Artificial freezing ensures the formation of a temporary ice wall around the shaft under construction, which prevents groundwater penetration into the shaft and increases the strength of rocks around the unsupported walls of the shaft until the permanent support is erected. The purpose of the study is to carry out thermotechnical calculation of ice wall with subsequent theoretical analysis of changing ice wall thickness with shifting to the passive freezing stage. The idea of the study is to determine these technological parameters based on the condition of maintaining the design ice wall thickness at the stage of passive freezing. The methodology and results of thermotechnical calculation of ice wall for the clay layer as applied to the case of the shafts under construction of a potash mine in the Republic of Belarus are presented. The thermal calculation of the ice wall was carried out numerically in the ANSYS software package using the finite element method. The findings of the numerical multiparameter modeling allowed theoretical analysis of ice wall thickness decrease with shifting to the passive freezing stage with higher brine temperature. The decrease in ice wall thickness was studied both during normal operation of the freezing station and at emergency operation mode caused by the failure of one of the freezing columns. Special attention in the analysis was paid to studying the influence of the duration of the active freezing stage and the distance between the columns on the decrease in the ice wall thickness. When analyzing changes in ice wall thickness at different distances between the freezing columns, it was found that the most common column spacing in the range from 1.1 to 1.3 m requires observing restrictions on the duration of active freezing to prevent a critical decrease in ice wall thickness during the passive freezing stage or decreasing the distance between the freezing columns. In this case, preservation of positive dynamics of ice wall thickness growth is ensured. For the clay layer considered in the study and the distance between the columns from 1.1 to 1.3 m, the minimum time of active freezing is also about 4.3 months. As a result of the analysis, the technological parameters of the freezing system (duration of the active freezing stage and the distance between the freezing columns) were determined, at which the ice wall thickness at the passive freezing stage did not become lower than the minimum permissible values calculated based on the strength and creep conditions.


Sign in / Sign up

Export Citation Format

Share Document