Discrete Time Single‐server Queues with Interdependent Interarrival and Service Times

2021 ◽  
pp. 1-19
Author(s):  
Attahiru Sule Alfa
1992 ◽  
Vol 29 (4) ◽  
pp. 967-978 ◽  
Author(s):  
Rhonda Righter ◽  
J. George Shanthikumar

We show that using the FIFO service discipline at single server stations with ILR (increasing likelihood ratio) service time distributions in networks of monotone queues results in stochastically earlier departures throughout the network. The converse is true at stations with DLR (decreasing likelihood ratio) service time distributions. We use these results to establish the validity of the following comparisons:(i) The throughput of a closed network of FIFO single-server queues will be larger (smaller) when the service times are ILR (DLR) rather than exponential with the same means.(ii) The total stationary number of customers in an open network of FIFO single-server queues with Poisson external arrivals will be stochastically smaller (larger) when the service times are ILR (DLR) rather than exponential with the same means.We also give a surprising counterexample to show that although FIFO stochastically maximizes the number of departures by any time t from an isolated single-server queue with IHR (increasing hazard rate, which is weaker than ILR) service times, this is no longer true for networks of more than one queue. Thus the ILR assumption cannot be relaxed to IHR.Finally, we consider multiclass networks of exponential single-server queues, where the class of a customer at a particular station determines its service rate at that station, and show that serving the customer with the highest service rate (which is SEPT — shortest expected processing time first) results in stochastically earlier departures throughout the network, among all preemptive work-conserving policies. We also show that a cµ rule stochastically maximizes the number of non-defective service completions by any time t when there are random, agreeable, yields.


1997 ◽  
Vol 10 (4) ◽  
pp. 363-381
Author(s):  
Pierre Le Gall

We consider the stochastic behavior of networks of single server queues when successive service times of a given customer are highly correlated. The study is conducted in two particular cases: 1) networks in heavy traffic, and 2) networks in which all successive service times have the same value (for a given customer), in order to avoid the possibility of breaking up the busy periods. We then show how the local queueing delay (for an arbitrary customer) can be derived through an equivalent tandem queue on the condition that one other local queueing delay is added: the jitter delay due to the independence of partial traffic streams.We consider a practical application of the results by investigating the influence of long packets on the queueing delay of short packets in modern packet switched telecommunication networks. We compare these results with the results given by traffic simulation methods to conclude that there is good agreement between results of calculation and of traffic simulation.


1963 ◽  
Vol 3 (4) ◽  
pp. 503-512 ◽  
Author(s):  
B. D. Craven

Various authors have studied the transient behaviour of single-server queues. Notably, Takacs [13], [14] has analysed a queue with recurrent input and exponential service time distributions, Keilson and Kooharian [9], [10] and Finch [5] have considered a queue with general independent input and service times, Finch [6] has analysed a queue with non-recurrent input and Erlang service, and Jaiswal [8] has considered the bulk-service queue with Poisson input and Erlang service.


1992 ◽  
Vol 29 (04) ◽  
pp. 967-978 ◽  
Author(s):  
Rhonda Righter ◽  
J. George Shanthikumar

We show that using the FIFO service discipline at single server stations with ILR (increasing likelihood ratio) service time distributions in networks of monotone queues results in stochastically earlier departures throughout the network. The converse is true at stations with DLR (decreasing likelihood ratio) service time distributions. We use these results to establish the validity of the following comparisons: (i) The throughput of a closed network of FIFO single-server queues will be larger (smaller) when the service times are ILR (DLR) rather than exponential with the same means. (ii) The total stationary number of customers in an open network of FIFO single-server queues with Poisson external arrivals will be stochastically smaller (larger) when the service times are ILR (DLR) rather than exponential with the same means. We also give a surprising counterexample to show that although FIFO stochastically maximizes the number of departures by any time t from an isolated single-server queue with IHR (increasing hazard rate, which is weaker than ILR) service times, this is no longer true for networks of more than one queue. Thus the ILR assumption cannot be relaxed to IHR. Finally, we consider multiclass networks of exponential single-server queues, where the class of a customer at a particular station determines its service rate at that station, and show that serving the customer with the highest service rate (which is SEPT — shortest expected processing time first) results in stochastically earlier departures throughout the network, among all preemptive work-conserving policies. We also show that a cµ rule stochastically maximizes the number of non-defective service completions by any time t when there are random, agreeable, yields.


Sign in / Sign up

Export Citation Format

Share Document